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This book is a a discussion of the calculation of speci�c formulas in �nance. The �eld of �nance has seen a
rapid development in recent years, with increasing mathematical sophistication. While the formalization
of the �eld can be traced back to the work of Markowitz (1952) on investors mean-variance decisions
and Modigliani and Miller (1958) on the capital structure problem, it was the solution for the price of
a call option by Black and Scholes (1973); Merton (1973) which really was the starting point for the
mathematicalization of �nance. The �elds of derivatives and �xed income have since then been the main
�elds where complicated formulas are used. This book is intended to be of use for people who want to
both understand and use these formulas, which explains why most of the algorithms presented later are
derivatives prices.

This project started when I was teaching a course in derivatives at the University of British Columbia, in
the course of which I sat down and wrote code for calculating the formulas I was teaching. I have always
found that implementation helps understanding these things. For teaching such complicated material it
is often useful to actually look at the implementation of how the calculation is done in practice. The
purpose of the book is therefore primarily pedagogical, although I believe all the routines presented are
correct and reasonably e�cient, and I know they are also used by people to price real options.

To implement the algorithms in a computer language I choose C++. My students keep asking why
anybody would want to use such a backwoods computer language, they think a spreadsheet can solve
all the worlds problems. I have some experience with alternative systems for computing, and no matter
what, in the end you end up being frustrated with higher end �languages�, such as Matlab og Gauss (Not
to mention the straitjacket which is is a spreadsheet.) and going back to implementation in a standard
language. In my experience with empirical �nance I have come to realize that nothing beats knowledge
a real computer language. This used to be FORTRAN, then C, and now it is C++ . All example algorithms
are therefore coded in C++. I do acknowledge that matrix tools like Matlabare very good for rapid
prototyping and compact calculations, and will in addition to C++ in places also illustrate the use of
Matlab.

The manuscript has been sitting on the internet for a number of years, during which it has been visited
by a large number of people, to judge by the number of mails I have received about the routines. The
present (2005) version mainly expands on the background discussion of the routines, this is much more
extensive. I have also added a good deal of introductory material on how to program in C++, since a
number of questions make it obvious this manuscript is used by a number of people who know �nance
but not C++. All the routines have been made to con�rm to the new ISO/ANSI C++ standard, using
such concepts as namespaces and the standard template library.

The current manscript therefore has various intented audiences. Primarily it is for students of �nance
who desires to see a complete discussion and implementation of some formula. But the manuscript is
also useful for students of �nance who wants to learn C++, and for computer scientists who want to
understand about the �nance algorithms they are asked to implent and embed into their programs.

In doing the implementation I have tried to be as generic as possible in terms of the C++ used, but I
have taken advantage of a some of the possibilities the language provides in terms of abstraction and
modularization. This will also serve as a lesson in why a real computer language is useful. For example
I have encapsulated the term structure of interest rate as an example of the use of classes.

This is not a textbook in the underlying theory, for that there are many good alternatives. For much of
the material the best textbooks to refer to are Hull (2006) and McDonald (2006), which I have used as
references. The notation of the present manuscipt is also similar to these books.

3



Chapter 1

On C++ and programming.

In this chapter I introduce C++ and discuss how to run programs written in C++. This is by no means
a complete reference to programming in C++, it is designed to give enough information to understand
the rest of the book. This chapter also only discusses a subset of C++, it concentrates on the parts of
the language used in the remainder of this book. For really learning C++ a textbook is necessary. I have
found Lippman and Lajoie (1998) an excellent introduction to the language. The authorative source on
the language is Stroustrup (1997).

1.1 Compiling and linking

To program in C++ one has to �rst write a separate �le with the program, which is then compiled

into low-level instructions (machine language) and linked with libraries to make a complete executable
program. The mechanics of doing the compiling and linking varies from system to system, and we leave
these details as an exercise to the reader.

1.2 The structure of a C++ program

The �rst thing to realize about C++ is that it is a strongly typed language. Everything must be declared
before it is used, both variables and functions. C++ has a few basic building blocks, which can be grouped
into types, operations and functions.

1.2.1 Types

The types we will work with in this book are bool, int, long, double and string.

Here are some example de�nitions

bool this_is_true=true;

int i = 0;

long j = 123456789;

double pi = 3.141592653589793238462643;

string s("this is a string");

The most important part of C++ comes from the fact that these basic types can be expanded by use of
classes, of which more later.

1.2.2 Operations

To these basic types the common mathematical operations can be applied, such as addition, subtraction,
multiplication and division:

int i = 100 + 50;

int j = 100 - 50;

int n = 100 * 2;

int m = 100 / 2;

These operations are de�ned for all the common datatypes, with exception of the string type. Such
operations can be de�ned by the programmer for other datatypes as well.
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Increment and decrement In addition to these basic operations there are some additional operations
with their own shorthand. An example we will be using often is incrementing and decrementing a variable.
When we want to increase the value of one item by one, in most languages this is written:

int i=0;

i = i+1;

i = i-1;

In C++ this operation has its own shorthand

int i=0;

i++;

i--;

While this does not seem intuitive, and it is excusable to think that this operation is not really necessary,
it does come in handy for more abstract data constructs. For example, as we will see later, if one de�nes
a date class with the necessary operations, to get the next date will simply be a matter of

date d(1,1,1995);

d++;

These two statements will result in the date in d being 2jan95.

1.2.3 Functions and libraries

In addition to the basic mathematical operations there is a large number of additional operations that
can be performed on any type. However, these are not parts of the core language, they are implemented
as standalone functions (most of which are actually written in C or C++). These functions are included
in the large library that comes with any C++ installation. Since they are not part of the core language
they must be de�ned to the compiler before they can be used. Such de�nitions are performed by means
of the include statement.

For example, the mathematical operations of taking powers and performing exponentiation are de�ned
in the mathematical library cmath. In the C++ program one will write

#include <cmath>

cmath is actually a �le with a large number of function de�ntions, among which one �nds pow(x,n)

which calculates xn, and exp(r) which calculates er. The following programming stub calculates a = 22

and b = e1.

#include <cmath>

double a = pow(2,2);

double b = exp(1);

which will give the variables a and b values of 4 and 2.718281828..., respectively.

1.2.4 Templates and libraries

The use of libraries is not only limited to functions. Also included in the standard library is generic data
structures, which can be used on any data type. The example we will be considering the most is the
vector<>, which de�nes an array, or vector of variables.

#include <vector>

vector<double> M(2);

M[0]=1.0;

M[1]=2.0;

M.push_back(3);
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This example de�nes an array with three elements of type double

M =

 1
2
3


Note some pecularities here. When �rst de�ning the vector with the statement

vector<double> M(2);

we de�ned an array of 2 elements of type double, which we then proceeded to �ll with the values 1 and
2. When �lling the array we addressed each element directly. Note that in the statement

M[0]=1.0;

lies one of the prime traps for programmers coming to C or C++ from another language. Indexing of
arrays starts at zero, not at one. M[0] really means the �rst element of the array.

The last statement,

M.push_back(3);

shows the ability of the programmer of changing the size of the array after it has been de�ned. push_back
is a standard operation on arrays which �pushes� the element onto the back of the array, extending the
size of the array by one element. Most programming languages do not allow the programmer to specify
variable-sized arrays �on the �y.� In FORTRAN or Pascal we would usually have to set a maximum length
for each array, and hope that we would not need to exceed that length. The vector<> template of C
++ gets rid of the programmers need for �bookkeeping� in such array manipulations.

1.2.5 Flow control

To repeat statements several times one will use on of the possibilities for �ow control, such as the for

or while constucts. For example, to repeat an operation n times one can use the following for loop:

for (int i=0; i<n; i++) {

some_operation(i);

};

The for statement has tree parts. The �rst part gives the initial condition (i=0). The next part the
terminal condition (i<n), which says to stop when i<n is not ful�lled, which is at the n'th iteration.
The last part is the increment statement (i++), saying what to do in each iteration. In this case the
value of i is increased by one in each iteration. This is the typical for statement. One of the causes
of C's reputation for terseness is the possibility of elaborate for constructs, which end up being almost
impossible to read. In the algorithms presented in this book we will try to avoid any obfuscated for

statements, and stick to the basic cases.

1.2.6 Input Output

For any program to do anything useful it needs to be able to output its results. Input and output
operations is de�ned in a couple of libraries, iostream and fstream. The �rst covers in/output to
standard terminals and the second in/output to �les.

To write to standard output cout (the terminal), one will do as follows:

#include <iostream>

cout << "This is a test" << endl;

To write to a �le "test.out", one will do as follows:
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#include <fstream>

ofstream outf;

outf.open("test.out");

outf << "This is a test" << endl;

outf.clear();

outf.close();

1.2.7 Splitting up a program

Any nontrivial program in C++ is split into several pieces. Usually each piece is written as a function
which returns a value of a given type. To illustrate we provide a complete example program, shown in
Code 1.1.

The program de�nes a function performing the mathematical power operation, power(x,n) which cal-
culates xn through the identity xn = en ln(x). This function is then used to calculate and print the �rst
5 powers of 2.

#include <iostream> // input output operations
#include <cmath> // mathematics library
using namespace std; // the above is part of the standard namespace

double power(double x, double n){
// de�ne a simple power function
double p = exp(n*log(x));
return p;

};

int main(){
for (int n=1;n<6;n++){

cout << " 2^" << n << " = " << power(2,n) << endl;
};

};

C++ Code 1.1: A complete program

When compiled, linked and run, the program will provide the following output

2^1 = 2

2^2 = 4

2^3 = 8

2^4 = 16

2^5 = 32

1.2.8 Namespaces

To help in building large programs, the concept of a namespace was introduced. Namespaces are a means
of keeping the variables and functions de�ned local to the context in which they are used. For now it is
necessary to know that any function in the standard C++ library lies in its own namespace, called the
standard namespace. To actually access these library functons it is necessary to explicitly specify that
one wants to access the standard namespace, by the statement

using namespace std;

Instead of such a general approach, one can also specify the namespace on an element by element basis,
but this is more a topic for specialized C++ texts, for the current purposes we will allow all routines
access to the whole standard namespace.
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1.3 Extending the language, the class concept.

One of the major advances of C++ relative to other programming languages is the programmers ability
to extend the language by creating new data types and de�ning standard operations on these data types.
This ability is why C++ is called an object oriented programming language, since much of the work in
programming is done by creating objects. An object is best though of as a data structure with operations
on it de�ned. How one uses an object is best shown by an example.

1.3.1 date, an example class

Consider the abstract concept of a date. A date can be speci�ed in any number of ways. Let us limit
ourselves to the Gregorian calendar. 12 august 2003 is a common way of specifying a date. However, it
can also be represented by the strings: �2003/8/12�, �12/8/2003� and so on, or by the number of years
since 1 january 1900, the number of months since January, and the day of the month (which is how a
UNIX programmer will think of it).

However, for most people writing programs the representation of a date is not relevant, they want to be
able to enter dates in some abstract way, and then are conserned with such questions as:

• Are two dates equal?

• Is one date earlier than another?

• How many days is it between two dates?

A C++ programmer will proceed to use a class that embodies these uses of the concept of a date.
Typically one will look around for an extant class which has already implemented this, but we will show
a trivial such date class as an example of how one can create a class.

A class is de�ned in a header �le, as shown in code 1.2. A number of things is worth noting here. As
internal representation of the date is chosen the three integers day_, month_ and year_. This is the data
structure which is then manipulated by the various functions de�ned below.

The functions are used to

• Create a date variable: date(const int& d, const int& m, const int& y);

• Functions outputting the date by the three integer functions day(), month() and year().

• Functions setting the date set_day(int), set_month(int) and set_year(int), which are used
by providing an integer as arguments to the function.

• Increment and decrement functions ++ and �

• Comparison functions <, <=, >, >=, == and !-.

After including this header �le, programmers using such a class will then treat an object of type date

just like any other.

For exmple,

date d(1,1,2001);

++d;

would result in the date object d containing the date 2 january 2001.

Any C++ programmer who want to use this date object will only need to look at the header �le to know
what are the possible functions one can use with a date object, and be happy about not needing to know
anything about how these functions are implemented. This is the encapsulation part of object oriented
programming, all relevant information about the date object is speci�ed by the header �le. This is the
only point of interaction, all details about implementation of the class objects and its functions is not
used in code using this object.
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class date {
protected:

int year ;
int month ;
int day ;

public:

date();
date(const int& d, const int& m, const int& y);

bool valid() const;

int day() const;
int month() const;
int year() const;

void set day (const int& day );
void set month (const int& month );
void set year (const int& year );

date operator ++(); // pre�x
date operator ++(int); // post�x
date operator −−(); // pre�x
date operator −−(int); // post�x

};

bool operator == (const date&, const date&); // comparison operators
bool operator != (const date&, const date&);
bool operator < (const date&, const date&);
bool operator > (const date&, const date&);
bool operator <= (const date&, const date&);
bool operator >= (const date&, const date&);

C++ Code 1.2: De�ning a date class

Let us look at the implementation of this.

Code 1.3 de�nes the basic operations, initialization, setting the date, and checking whether a date is
valid.
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#include "date.h"

date::date(){ year = 0; month = 0; day = 0;};

date::date(const int& day, const int& month, const int& year){
day = day;
month = month;
year = year;

};

int date::day() const { return day ; };
int date::month() const { return month ; };
int date::year() const { return year ; };

void date::set day (const int& day) { date::day = day; };
void date::set month(const int& month) { date::month = month; };
void date::set year (const int& year) { date::year = year; };

bool date::valid() const {
// This function will check the given date is valid or not.
// If the date is not valid then it will return the value false.
// Need some more checks on the year, though

if (year <0) return false;
if (month >12 | | month <1) return false;
if (day >31 | | day <1) return false;
if ((day ==31 && ( month ==2 | | month ==4 | | month ==6 | | month ==9 | | month ==11) ) )

return false;
if ( day ==30 && month ==2) return false;
// should also check for leap years, but for now allow for feb 29 in any year
return true;

};

C++ Code 1.3: Basic operations for the date class
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For many abstract types it can be possible to de�ne an ordering. For dates there is the natural ordering.
Code 1.4 shows how such comparison operations is de�ned.

#include "date.h"

bool operator == (const date& d1,const date& d2){ // check for equality
if (! (d1.valid() && (d2.valid())) ) { return false; }; /* if dates not valid, not clear what to do.

alternative: throw exception */
return ((d1.day()==d2.day()) && (d1.month()==d2.month()) && (d1.year()==d2.year()));

};

bool operator < (const date& d1, const date& d2){
if (! (d1.valid() && (d2.valid())) ) { return false; }; // see above remark
if (d1.year()==d2.year()) { // same year

if (d1.month()==d2.month()) { // same month
return (d1.day()<d2.day());

}
else {

return (d1.month()<d2.month());
};

}
else { // di�erent year

return (d1.year()<d2.year());
};

};

// remaining operators de�ned in terms of the above

bool operator <=(const date& d1, const date& d2){
if (d1==d2) { return true; }
return (d1<d2);

}

bool operator >=(const date& d1, const date& d2) {
if (d1==d2) { return true;};
return (d1>d2);

};

bool operator > (const date& d1, const date& d2) { return !(d1<=d2);};

bool operator !=(const date& d1, const date& d2){ return !(d1==d2);}

C++ Code 1.4: Comparison operators for the date class

11



Code 1.5 shows operations for �nding previous and next date, called an iteration operator.

#include "date.h"

date next date(const date& d){
if (!d.valid()) { return date(); }; //
date ndat=date((d.day()+1),d.month(),d.year()); // �rst try adding a day
if (ndat.valid()) return ndat;
ndat=date(1,(d.month()+1),d.year()); // then try adding a month
if (ndat.valid()) return ndat;
ndat = date(1,1,(d.year()+1)); // must be next year
return ndat;

}

date previous date(const date& d){
if (!d.valid()) { return date(); }; // return the default date
date pdat = date((d.day()−1),d.month(),d.year()); if (pdat.valid()) return pdat; // try same month
pdat = date(31,(d.month()−1),d.year()); if (pdat.valid()) return pdat; // try previous month
pdat = date(30,(d.month()−1),d.year()); if (pdat.valid()) return pdat;
pdat = date(29,(d.month()−1),d.year()); if (pdat.valid()) return pdat;
pdat = date(28,(d.month()−1),d.year()); if (pdat.valid()) return pdat;
pdat = date(31,12,(d.year()−1)); // try previous year
return pdat;

};

date date::operator ++(int){ // post�x operator
date d = *this;
*this = next date(d);
return d;

}

date date::operator ++(){ // pre�x operator
*this = next date(*this);
return *this;

}

date date::operator −−(int){ // post�x operator, return current value
date d = *this;
*this = previous date(*this);
return d;

}

date date::operator −−(){ // pre�x operator, return new value
*this = previous date(*this);
return *this;

};

C++ Code 1.5: Iterative operators for the date class
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Exercise 1.

The function valid() in the date class accepts february 29'th in every year, but this should ideally only
happen for leap years. Modify the function to return a false if the year is not a leap year.

Exercise 2.

A typical operating system has functions for dealing with dates, which your typical C++ implementation can
call. Find the relevant functions in your implementation, and

1. Implement a function querying the operating system for the current date, and return this date.

2. Implement a function querying the operating system for the weekday of a given date, and return a
representation of the weekday as a member of the set:

{"mon","tue","wed","thu","fri","sat","sun"}

3. Reimplement the valid() function using a system call.

Exercise 3.

Once the date class is available, a number of obvious functions begs to be implemented. How would you

1. Add a given number of days to a date?

2. Go to the end or beginning of a month?

3. Find the distance betwen two dates (in days or in years)?

4. Extract a date from a string? (Here one need to make some assumptions about the format)

13



1.4 Const references

Let us now discuss a concept of more technical nature. Consider two alternative calls to a function,
de�ned by function calls:

some_function(double r);

some_function(const double& r);

They both are called by an argument which is a double, and that argument is guaranteed to not be
changed in the calling function, but they work di�erently. In the �rst case a copy of the variable
referenced to in the argument is created for use in the function, but in the second case one uses the
same variable, the argument is a reference to the location of the variable. The latter is more e�cient,
in particular when the argument is a large class. However, one worries that the variable referred to is
changed in the function, which in most cases one do not want. Therefore the const quali�er, it says
that the function can not modify its argument. The compiler will warn the programmer if an attempt is
made to modify such a variable.

For e�ciency, in most of the following routines arguments are therefore given as as constant references.

1.5 Other C++ concepts

A number of other C++ concepts, such as function prototypes and templates, will be introduced later in
particular contexts. They only appear in a few places and is better introduced where they are used.

14



Chapter 2

Matrix Tools

Being computer literate entails being aware of a number of computer tools and being able to choose the
most suitable tool for the problem at hand. Way to many people turns this around, and want to �t any
problem to the computer tool they know. The tool that very often is the tool for business school students
is a spreadsheet like Excel. However, this is not the best tool for more computationally intensive tasks.

While the bulk of the present book concerns itself with C++, in many applications in �nance a very
handy tool is a language for manipulating vectors and matrices using linear algebra. There are a lot
of di�erent possible programs that behaves very similarly, with a syntax taken from the mathematical
formulation of linear algebra. An early tool of this sort was matlab, with a large number of programs
copying much of the syntax of this program. As a result of this there is a proliferation of programs with
similar syntax to matlab doing similar analysis. General tools include the commercial version of matlab

sold by Mathworks, the public domain programs octave and scilab. Tools that are similar, but more
geared towards econometrics, include S with its public domain �clone� R, Gauss and Ox. As for what
program to install, there is no right answer. For the basic learning of how these tools work, any of the
mentioned packages will do the job. For students on a limited budget the public domain tools octave
and scilab are obvious candidates. Both of them perform the basic operations done by the commercial
matlab package, and good for learning the basics of such a matrix tool.

In the rest of this chapter I will give an introduction to a tool like this.

2.1 The �rst screen

These tools are interactive, they present you with a prompt, and expect you to start writing commands.
I will denote

>

as the prompt, which means that the program is ready to receive commands. In the text output of the
matrix tool will be shown typewritten as:

> A = [1, 2, 3; 4, 5, 6]

This particular command de�nes a matrix A, the matrix tool will respond to this command by printing
the matrix that was just de�ned:

A =

1 2 3

4 5 6
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Chapter 3

The value of time

Finance as a �eld of study is sometimes somewhat �ippantly said to deal with the value of two things:
time and risk. While this is not the whole story, there is a deal of truth in it. These are the two issues
which is always present. We start our discussion by ignoring risk and only considering the implications
of the fact that anybody prefers to get something earlier rather than later, or the value of time.

3.1 Present value

The present value is the current value of a stream of future payments. Let Ct be the cash �ow at time
t. Suppose we have N future cash �ows that occur at times t1, t2, · · · , tN .

-
0 t1 t2 tN

C1 C2 CN

time

To �nd the present value of these future cash �ows one need a set of prices of future cash �ows. Suppose
dt is the price one would pay today for the right to receive one dollar at a future date t. Such a price
is also called a discount factor. To complicate matters further such prices will di�er depending on the
riskiness of the future cash �ows. For now we concentrate on one particular set of prices, the prices of
riskless future cash �ows. We will return to how one would adjust the prices for risky cash �ows.

If one knows the set of prices for future claims of one dollar, d1, d2, . . . ,, one would calculate the present
value as the sum of the present values of the di�erent elements.

PV =
N∑

i=1

dti
Cti

-
0 t1 t2 tN

Ct1 Ct2 CtN

time

�dt1Ct1

�
dt2Ct2

�dtN
CtN

However, knowing this set of current prices for cash �ows at all future dates is not always feasible, and
some way has to be found to simplify the data need inherent in such general present value calculations.

3.2 One interest rate with annual compounding

The best known way to simplify the present value calculation is to rewrite the discount factors in terms
of interest rates, or yields, through the relationship:

dt =
1

(1 + rt)t
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where rt is the interest rate (usually termed the spot rate) relevant for a t-period investment. To further
simplify this calculation one can impose that this interest rate r is constant for all periods.1 The prices
for valuing the future payments dt is calculated from this interest rate:

dt =
1

(1 + r)t
,

In this case one would calculate the present value of a stream of cash �ows paid at discrete dates
t = 1, 2, . . . N as

PV =
N∑

t=1

Ct

(1 + r)t
.

The implementation of this calculation is shown in code 3.1.

#include <cmath>
#include <vector>
using namespace std;
#include <iostream>
double cash �ow pv discrete(const vector<double>& c�ow times,

const vector<double>& c�ow amounts,
const double& r){

double PV=0.0;
for (int t=0; t<c�ow times.size();t++) {

PV += c�ow amounts[t]/pow(1.0+r,c�ow times[t]);
};
return PV;

};

C++ Code 3.1: Present value with discrete compounding

Given the assumption of a discrete, annual interest rate, there are a number of useful special cases of
cash �ows where one can calculate the present value in a simpli�ed manner. Some of these are shown in
the following exercises.

Exercise 4.

Perpetuity [5]

A perpetuity is a promise of a payment of a �xed amount X each period for the inde�nite future. Suppose
there is a �xed interest rate r.

1. Show that the present value of this sequence of cash �ows is calculated simply as

PV =
∞∑

t=1

X

1 + r
=

X

r

Exercise 5.

Growing perpetuity [6]

A growing perpetuity is again an in�nite sequence of cash�ows, where the payment the �rst year is X and
each consequent payment grows by a constant rate g, i.e, the time 2 payment is X(1+g), the time 3 payment
is X(1 + g)2, and so on.

1. Show that the present value of this perpetuity simpli�es to

PV =
∞∑

t=1

X(1 + g)t−1

(1 + r)t
=

X1

r − g

1This is termed a �at term structure. We will in the next chapter relax this simplifying assumption.
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Exercise 6.

Annuity [5]

An annuity is a sequence of cash�ows for a given number of years, say T periods into the future. Consider
an annuity paying a �xed amount X each period. The interest rate is r.

1. Show that the present value of this sequence of cash �ows can be simpli�ed as

PV =
T∑

t=1

X

(1 + r)t
= X

[
1
r
− 1

r

1
(1 + r)T

]

Exercise 7.

Growing Annuity [6]

An growing annuity is a sequence of cash�ows for a given number of years, say T periods into the future,
where each payment grows by a given factor each year. We Consider a T -period annuity that pays X the �rst
period. After that, the payments grows at a rate of g per year, i.e. the second year the cash �ow is X(1+ g),
the third X(1 + g)2, and so on.

1. Show that the present value of this growing annuity can be simpli�ed as

PV =
T∑

t=1

X(1 + g)(t−1)

(1 + r)t
= X

[
1

r − g
−
(

1 + g

1 + r

)T 1
r − g

]

Exercise 8.

Rank the following cash �ows in terms of present value. Use an interest rate of 5%.

1. A perpetuity with an annual payment of $100.

2. A growing perpetuity, where the �rst payment is $75, and each subsequent payment grows by 2%.

3. A 10-year annuity with an annual payment of $90.

4. A 10 year growing annuity, where the �rst paymet is $85, and each subsequent payment grows by 5%.

3.2.1 Internal rate of return.

In addition to its role in simplifying present value calculations, the interest rate has some further use.
The percentage return on an investment is a summary measure of the investment's pro�tability. Saying
that an investment earns 10% per year is a good way of summarizing the cash �ows in a way that does
not depend on the amount of the initial investment. The return is thus a relative measure of pro�tability.
To estimate a return for a set of cash �ows we calculate the internal rate of return. The internal rate of
return for a set of cash �ows is the interest rate that makes the present value of the cash �ows equal to
zero.

Suppose the cash �ows are C0, C1, C2, . . . CT . Finding an internal rate of return is thus to �nd a solution
y of the equation

T∑
t=1

Ct

(1 + y)t
− C0 = 0

Note that this is a polynomial equation, and as T becomes large, there in no way to �nd an explicit
solution to the equation. It therefore needs to be solved numerically. For relatively well behaved cash
�ows, where we know that there is one IRR, the method implemented in code 3.2 is suitable, it is
an iterative process called bisection. It is an adaption of the bracketing approach discussed in (Press,
Teukolsky, Vetterling, and Flannery, 1992, Chapter9),
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#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#include "fin_recipes.h"

const double ERROR=−1e30;

double cash �ow irr discrete(const vector<double>& c�ow times,
const vector<double>& c�ow amounts) {

// simple minded irr function. Will �nd one root (if it exists.)
// adapted from routine in Numerical Recipes in C.
if (c�ow times.size()!=c�ow amounts.size()) return ERROR;
const double ACCURACY = 1.0e−5;
const int MAX ITERATIONS = 50;
double x1=0.0;
double x2 = 0.2;

// create an initial bracket, with a root somewhere between bot,top
double f1 = cash �ow pv discrete(c�ow times, c�ow amounts, x1);
double f2 = cash �ow pv discrete(c�ow times, c�ow amounts, x2);
int i;
for (i=0;i<MAX ITERATIONS;i++) {

if ( (f1*f2) < 0.0) { break; }; //
if (fabs(f1)<fabs(f2)) {

f1 = cash �ow pv discrete(c�ow times,c�ow amounts, x1+=1.6*(x1−x2));
}
else {

f2 = cash �ow pv discrete(c�ow times,c�ow amounts, x2+=1.6*(x2−x1));
};

};
if (f2*f1>0.0) { return ERROR; };
double f = cash �ow pv discrete(c�ow times,c�ow amounts, x1);
double rtb;
double dx=0;
if (f<0.0) {

rtb = x1;
dx=x2−x1;

}
else {

rtb = x2;
dx = x1−x2;

};
for (i=0;i<MAX ITERATIONS;i++){

dx *= 0.5;
double x mid = rtb+dx;
double f mid = cash �ow pv discrete(c�ow times,c�ow amounts, x mid);
if (f mid<=0.0) { rtb = x mid; }
if ( (fabs(f mid)<ACCURACY) | | (fabs(dx)<ACCURACY) ) return x mid;

};
return ERROR; // error.

};

C++ Code 3.2: Estimation of the internal rate of return

When there is a uniquely de�ned internal rate of return we get a relative measure of the pro�tability of
a set of cash �ows, measured as a return, typically expressed as a percentage. Note some of the implicit
assumptions made here. We assume that the same interest rate applies at all future dates (i.e. a �at
term structure). The IRR method also assumes intermediate cash �ows are reinvested at the internal
rate of return.
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Suppose we are considering an investment with the following cash �ows at dates 0, 1 and 2:

C0 = −100, C1 = 10, C2 = 110

1. Suppose the current interest rate is 5%. Determine the present value of the cash �ows.

2. Find the internal rate of return of this sequence of cash �ows.

C++ program:

void test present value(){
vector<double> c�ows; c�ows.push back(−100.0); c�ows.push back(10.0); c�ows.push back(110.0);
vector<double> times; times.push back(0.0); times.push back(1); times.push back(2);
double r=0.05;
cout << " present value, 5\% discretely compounded interest = " ;
cout << cash �ow pv discrete(times, c�ows, r) << endl;
cout << " internal rate of return = ";
cout << cash �ow irr discrete(times, c�ows) << endl;

};

Output from C++ program:

present value, 5% discretely compounded interest = 9.29705

internal rate of return = 0.1

Example 3.1: Present value calculation

20



In addition to the above economic quali�cations to interpretations of the internal rate of return, we also
have to deal with technical problem stemming from the fact that any polynomial equation has potentially
several solutions, some of which may be imaginary.2 To see whether we are likely to have problems in
identifying a single meaningful IRR, the code shown in code 3.3 implements a simple check. It is only
a necessary condition for a unique IRR, not su�cient, so you may still have a well-de�ned IRR even
if this returns false. The �rst test is just to count the number of sign changes in the cash �ow. From
Descartes rule we know that the number of real roots is one if there is only one sign change. If there is
more than one change in the sign of cash �ows, we can go further and check the aggregated cash �ows
for sign changes (See Norstrom (1972)).

#include <cmath>
#include <vector>
using namespace std;

inline int sgn(const double& r){ if (r>=0) {return 1;} else {return −1;}; };

bool cash �ow unique irr(const vector<double>& c�ow times,
const vector<double>& c�ow amounts) {

int sign changes=0; // �rst check Descartes rule
for (int t=1;t<c�ow times.size();++t){

if (sgn(c�ow amounts[t−1]) !=sgn(c�ow amounts[t])) sign changes++;
};
if (sign changes==0) return false; // can not �nd any irr
if (sign changes==1) return true;

double A = c�ow amounts[0]; // check the aggregate cash �ows, due to Norstrom
sign changes=0;
for (int t=1;t<c�ow times.size();++t){

if (sgn(A) != sgn(A+=c�ow amounts[t])) sign changes++;
};
if (sign changes<=1) return true;
return false;

}

C++ Code 3.3: Test for uniqueness of IRR

A better way to gain an understanding for the relationship between the interest rate and the present value
is simply to plot the present value as a function of the interest rate. The following picture illustrates the
method for two di�erent cash �ows. Note that the set of cash �ows on the left has two possble interest
rates that sets the present value equal to zero.

C0 = −100, C1 = 10, C2 = 100 C0 = −100, C1 = 201, C2 = −100

3.2.2 Bonds

A prime application of present value calculations is the pricing of bonds and other �xed income securities.
What distinguishes bonds is that the future payments are set when the security is issued. The simplest,

2By imaginary here we mean that we move away from the real line to the set of complex numbers.
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and most typical bond, is a �xed interest, constant maturity bond with no default risk. There is however
a large number of alternative contractual features of bonds. The bond could for example ba an annuity
bond, paying a �xed amount each period. For such a bond the principal amount outstanding is paid
gradually during the life of the bond. The interest rate the bond pays need not be �xed, it could be
a �oating rate, the interest rate paid could be a function of some market rate. Many bonds are issued
by corporations, and in such cases there is a risk that the company issued the bond defaults, and the
bond does not pay the complete promised amount. Another thing that makes bond pricing di�cult in
practice, is that interest rates tend to change over time.

Bond Price

We start by considering a �xed interest bond with no default risk. Such bonds are typically bonds issued
by governments. The bond is a promise to pay a face value F at the maturity date T periods from now.
Each period the bond pays a �xed percentage amount of the face value as coupon C. The cash �ows
from the bond thus look as follows.

t = 0 1 2 3 · · · T
Coupon C C C · · · C
Face value F

The current bond price (B0) is the present value of these cash �ows:

B0 =
T∑

t=1

Ct

(1 + r)t
,

where Ct = C when t < T and CT = C + F . The calculation of the bond price with discrete annual
compounding is shown in code 3.4.

#include <cmath>
#include <vector>
using namespace std;

double bonds price discrete(const vector<double>& times,
const vector<double>& cash�ows,
const double& r) {

double p=0;
for (int i=0;i<times.size();i++) {

p += cash�ows[i]/(pow((1+r),times[i]));
};
return p;

};

C++ Code 3.4: Bond price calculation with discrete, annual compounding.

Yield to maturity

Since bonds are issued in terms of interest rate, it is also useful to �nd an interest rate number that
summarizes the terms of the bond. The obvious way of doing that is asking the question: What is the
internal rate of return on the investment of buying the bond now and keeping the bond to maturity?
The answer to that question is the yield to maturity of a bond. The yield to maturity is the interest rate
that makes the present value of the future coupon payments equal to the current bond price, that is, for
a known price B0, the yield is the solution y to the equation

B0 =
T∑

t=1

Ct

(1 + y)t
(3.1)

This calculation therefore has the same quali�cations as discussed earlier, it supposes reinvestment of
coupon at the bond yield. There is much less likelihood we'll have technical problems with multiple
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solutions when doing this yield estimation for bonds, since the structure of cash �ows usually is such
that there exist only one real solution to the equation. The algorithm for �nding a bonds yield to
maturity shown in code 3.5 is thus simple bisection. We know that the bond yield is above zero and set
zero as a lower bound on the bond yield. We then �nd an upper bound on the yield by increasing the
interest rate until the bond price with this interest rate is negative. We then bisect the interval between
the upper and lower until we are �close enough.�

#include <cmath>
using namespace std;

#include "fin_recipes.h"

double bonds yield to maturity discrete( const vector<double>& times,
const vector<double>& cash�ows,
const double& bondprice) {

const double ACCURACY = 1e−5;
const int MAX ITERATIONS = 200;
double bot=0, top=1.0;
while (bonds price discrete(times, cash�ows, top) > bondprice) { top = top*2; };
double r = 0.5 * (top+bot);
for (int i=0;i<MAX ITERATIONS;i++){

double di� = bonds price discrete(times, cash�ows,r) − bondprice;
if (fabs(di�)<ACCURACY) return r;
if (di�>0.0) { bot=r;}
else { top=r; };
r = 0.5 * (top+bot);

};
return r;

};

C++ Code 3.5: Bond yield calculation with discrete, annual compounding

A 3 year bond with a face value of $100 makes annual coupon payments of 10%. The current interest
rate (with annual compounding) is 9%.

1. Find the bond's current price.

2. Find the bond's yield to maturity.

C++ program:

void test bonds price discrete(){
vector<double> c�ows; c�ows.push back(10); c�ows.push back(10); c�ows.push back(110);
vector<double> times; times.push back(1); times.push back(2); times.push back(3);
double r=0.09;
double B = bonds price discrete(times, c�ows, r);
cout << " Bond price, 9\% discretely compounded interest = " << B << endl;
cout << " bond yield to maturity = " << bonds yield to maturity discrete(times, c�ows, B) << endl;

};

Output from C++ program:

Bond price, 9% discretely compounded interest = 102.531

bond yield to maturity = 0.09

Duration

When holding a bond one would like to know how sensitive the value of the bond is to changes in
economic environment. The most relevent piece of the economic environment is the current interest rate.
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An important component of such calculation is the duration of a bond. The duration of a bond should
be interpreted as the weighted average maturity of the bond, and is calculated as

Duration =

∑
t t Ct

(1+r)t

Bond Price

where Ct is the cash �ow in period t, and r the interest rate. Using the bond price calculated in
equation 3.1 we calculate duration as

D =

∑
t

tCt

(1+r)t∑
t

Ct

(1+r)t

(3.2)

which is shown in code 3.6

#include <cmath>
#include <vector>
using namespace std;

double bonds duration discrete(const vector<double>& times,
const vector<double>& cash�ows,
const double& r) {

double B=0;
double D=0;
for (int i=0;i<times.size();i++){

D += times[i] * cash�ows[i] / pow(1+r,times[i]);
B += cash�ows[i] / pow(1+r,times[i]);

};
return D/B;

};

C++ Code 3.6: Bond duration using discrete, annual compounding and a �at term structure

An alternative approach to calculating duration is calculate the yield to maturity y for the bond, and
use that in estimating the bond price. This is called Macaulay Duration. First one calculates y, the yield
to maturity, from

Bond price =
T∑

t=1

Ct

(1 + y)t

and then use this y in the duration calculation:

Macaulay duration =

∑
t

tCt

(1+y)t∑
t

Ct

(1+y)t

(3.3)

Code 3.7 implements this calculation.

#include "fin_recipes.h"

double bonds duration macaulay discrete(const vector<double>& times,
const vector<double>& cash�ows,
const double& bond price) {

double y = bonds yield to maturity discrete(times, cash�ows, bond price);
return bonds duration discrete(times, cash�ows, y); // use YTM in duration calculation

};

C++ Code 3.7: Calculating the Macaulay duration of a bond

Note though, that in the present case, with a �at term structure, these should produce the same number.
If the bond is priced correctly, the yield to maturity must equal the current interest rate. If r = y the
two calculations in equations )3.2) and (3.3) obviously produces the same number.
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3.2.3 Measuring bond sensitivity to interest rate changes

Now, the reason for why we say that we can measure the sensitivity of a bond price using duration. To
a �rst approximation, ∆B0, the change in the bond price for a small change in the interest rate ∆r, can
be calculated

∆B0

B0
≈ − D

1 + r
∆r

where D is the bond's duration. For simplicity one often calculates the term in front of the ∆y in the
above, D

1+y directly and terms it the bond's modi�ed duration.

Modi�ed Duration = D∗ =
D

1 + r

The sensitivity calculation is then

∆B0

B0
≈ −D∗∆r

The modi�ed duration is also written in term's of the bond's yield to maturity y, and is then

D∗ =
D

1 + y

Code 3.8 shows this calculation.

#include <vector>
using namespace std;
#include "fin_recipes.h"

double bonds duration modi�ed discrete (const vector<double>& times,
const vector<double>& cash�ows,
const double& bond price){

double y = bonds yield to maturity discrete(times, cash�ows, bond price);
double D = bonds duration discrete(times, cash�ows, y);
return D/(1+y);

};

C++ Code 3.8: Modi�ed duration

Approximating bond price changes using duration is illustrated in the following �gure.
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bond price

yield

Duration measures
angle of tangent.�

The modi�ed duration measures the angle of the tangent at the current bond yield. Approximating
the change in bond price with duration is thus only a �rst order approximation. To improve on this
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approximation we also need to account for the curvature in the relationship between bond price and
interest rate. To quantify this curvature we calculate the convexity of a bond.

Convexity = Cx =
1

B0

1
(1 + r)2

T∑
t=1

(t + t2)
Ct

(1 + r)t
(3.4)

This calculation is implemented in code 3.9. . To improve on the estimate of how the bond price change

#include <cmath>
#include "fin_recipes.h"

double bonds convexity discrete(const vector<double>& times,
const vector<double>& cash�ows,
const double& r) {

double Cx=0;
for (int i=0;i<times.size();i++){

Cx+= cash�ows[i]*times[i]*(times[i]+1)/(pow((1+r),times[i]));
};
double B=bonds price discrete(times, cash�ows, r);
return (Cx/(pow(1+r,2)))/B;

};

C++ Code 3.9: Bond convexity with a �at term structure and annual compounding

when the interest rates changes you will then calculate

∆B0

B0
≈ −D∗∆y +

1
2
Cx (∆y)2

Formula 3.1 summarizes the above calculations.

Exercise 9.

Perpetual duration [4]

The term structure is �at. Consider the pricing of a perpetual bond. Let C be the per period cash �ow

B0 =
∞∑

t=1

C

(1 + r)t
=

C

r

1. Determine the �rst derivative of the price with respect to the interest rate.

2. Find the duration of the bond.

Exercise 10.

Consider an equally weighted portfolio of two bonds, A and B. Bond A is a zero coupon bond with 1 year to
maturity. Bond B is a zero coupon bond with 3 years to maturity. Both bonds have face values of 100. The
current interest rate is 5%.

1. Determine the bond prices.

2. Your portfolio is currently worth 2000. Find the number of each bond invested.

3. Determine the duration of the portfolio.

4. Determine the convexity of your position.
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Bond Price (B0)

B0 =
T∑

t=1

Ct

(1 + r)t

Yield to maturity y solves

B0 =
T∑

t=1

Ct

(1 + y)t

Duration (D)

D =
1

B0

T∑
t=1

tCt

(1 + r)t

Macaulay duration

D =
1

B0

T∑
t=1

tCt

(1 + y)t

Modi�ed duration

D∗ =
D

1 + y

Convexity (Cx)

Cx =
1

B0

1
(1 + r)2

T∑
t=1

(t + t2)
Ct

(1 + r)t

Approximating bond price changes

∆B0

B0
≈ −D∗∆y

∆B0

B0
≈ −D∗∆y +

1
2
× Cx× (∆y)2

Ct: Cash �ow at time t, r: interest rate, y: bond yield to maturity, B0: current bond price. Bond pays coupon at evenly spaced
dates t = 1, 2, 3 . . . , T .

Formula 3.1: Bond pricing formulas with a �at term structure and discrete, annual compounding
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A 3 year bond with a face value of $100 makes annual coupon payments of 10%. The current interest
rate (with annual compounding) is 9%.

1. Determine the current bond price.

2. Suppose the interest rate changes to 10%, determine the new price of the bond by direct calculation.

3. Instead of direct calculation, use duration to estimate the new price and compare it to the correct
price.

4. Use convexity to improve on your estimation using duration.

Solving the above

1. The bond price:

B0 =
10

(1 + 0.09)1
+

10
(1 + 0.09)2

+
110

(1 + 0.09)3
= 102.531

2. If the interest rate increases to 10%, the bond will be selling at par, equal to 100, which can be
con�rmed with direct computation:

B0 =
10

(1 + 0.1)1
+

10
(1 + 0.1)2

+
110

(1 + 0.1)3
= 100

3. Calculate the bond's duration:

D =
1

102.531

(
1 · 10
1.09

+
2 · 10
1.092

+
3 · 110
1.093

)
= 2.74

Modi�ed duration:

D∗ =
D

1 + r
=

2.74
1.09

= 2.51

Let us now calculate the change in the bond price

∆B0

B0
= −D∗∆y = −2.51 · 0.01 = −0.0251

Which means theat the bond price changes to:

B0 + δB0 = 102.531 +
(

∆B0

B0

)
B0 = 102.531− 0.0251 · 102.531 = 99.957

4. Calculate the bond's convexity

Cx =
1

(1 + 0.09)2
1

102.531

(
(1 + 1) · 10

1.09
+

(22 + 2) · 10
1.092

+
(3 + 32) · 110

1.093

)
= 8.93

Recalculating the change in the bond price using convexity:

∆B0

B0
= −D∗∆y +

1
2
Cxy2 = −2.51 · 0.01 +

1
2
8.93(0.01)2 = −0.0251 + 0.00044 = −0.02465

Use this to re-estimate the bond price:

B0 + ∆B0 = 102.531
(

1 +
(

∆B0

B0

)
B0

)
= 102.531(1− 0.02465) = 100.0036

Most of the same calculations are shown below:

C++ program:

void test bonds duration discrete(){
vector<double> c�ows; c�ows.push back(10); c�ows.push back(10); c�ows.push back(110);
vector<double> times; times.push back(1); times.push back(2); times.push back(3);
double r=0.09;
double B = bonds price discrete(times, c�ows, r);
cout << " bond duration = " << bonds duration discrete(times, c�ows, r) << endl;
cout << " bond duration modified = " << bonds duration modi�ed discrete(times, c�ows, B) << endl;
cout << " bond convexity =" << bonds convexity discrete(times, c�ows, r) << endl;

};

Output from C++ program:

bond duration = 2.73895

bond duration modified = 2.5128

bond convexity =8.93248
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3.3 Continously compounded interest

Such discrete compounding as we have just discussed is not the only alternative way to approximate the
discount factor. The discretely compounded case assumes that interest is added at discrete points in time
(hence the name). However, an alternative assumption is to assume that interest is added continously.
If compounding is continous, and r is the interest rate, one would calculate the current price of reciving
one dollar at a future date t as

Pt = e−rt,

Formula 3.2 summarizes some rules for translating between continously compounded and discretly com-
pounded interest rates.

r = n ln
(
1 +

rn

n

)
rn = n

(
e

r
n − 1

)
Future value = ert

Present value = e−rt

Notation: rn: interest rate with discrete compounding, n: compounding periods per year. r: interest rate with
continuous compounding, t: time to maturity.

Formula 3.2: Translating between discrete and continous compounding

3.3.1 Present value

Applying this to a set of cash �ows at future dates t1, t2, . . . , tn, we get the following present value
calculation:

PV =
n∑

i=1

e−rtiCti

This calculation is implemented as shown in code 3.10.

#include <cmath>
#include <vector>
using namespace std;

double cash �ow pv( const vector<double>& c�ow times,
const vector<double>& c�ow amounts,
const double& r){

double PV=0.0;
for (int t=0; t<c�ow times.size();t++) {

PV += c�ow amounts[t] * exp(−r*c�ow times[t]);
};
return PV;

};

C++ Code 3.10: Present value calculation with continously compounded interest

In much of what follows we will work with the case of continously compounded interest. There is a
number of reasons why, but a prime reason is actually that it is easier to use continously compounded
interest than discretely compounded, because it is easier to deal with uneven time periods. Discretely
compounded interest is easy to use with evenly spaced cash �ows (such as annual cash �ows), but harder
otherwise.
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3.3.2 Bond pricing and analysis

We will go over the same concepts as covered in the previous section on bond pricing. There are certain
subtle di�erences in the calculations. Formula 3.3 corresponds to the earlier summary in formula 3.1.

Bond Price B0:

B0 =
∑

i

e−rti)Cti

Yield to maturity y solves:

B0 =
∑

i

Ctie
−yti

Duration D:

D =
1

B0

∑
i

tiCtie
−rti

Macaulay duration

D =
1

B0

∑
i

tiCti
e−yti

Convexity Cx:

Cx =
1

B0

∑
i

Cti
t2i e

−rti

Approximating bond price changes

∆B0

B0
≈ −D∆y

∆B0

B0
≈ −D∆y +

1
2
× Cx× (∆y)2

Bond paying cash �ows Ct1 , Ct2 , . . . at times t1, t2, . . .. Notation: B0: current bond price. e: natural exponent.

Formula 3.3: Bond pricing formulas with continously compounded interest and a �at term structure

Some important di�erences is worth pointing out. When using continously compounded interest, one does
not need the concept of modi�ed duration. In the continously compounded case one uses the calculated
duration directly to approximat bond changes, as seen in the formulas describing the approximation of
bond price changes. Note also the di�erence in the convexity calculation, one does not divide by (1+y)2

in the continously compounded formula, as was done in the discrete case.

Codes 3.11, 3.12, 3.13 and 3.14 show continously compounded analogs of the earlier codes for the dis-
cretely compounded case.
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#include <cmath>
#include <vector>
using namespace std;

double bonds price(const vector<double>& cash�ow times,
const vector<double>& cash�ows,
const double& r) {

double p=0;
for (int i=0;i<cash�ow times.size();i++) {

p += exp(−r*cash�ow times[i])*cash�ows[i];
};
return p;

};

C++ Code 3.11: Bond price calculation with continously compounded interest and a �at term structure

#include <cmath>
#include <vector>
using namespace std;

double bonds duration(const vector<double>& cash�ow times,
const vector<double>& cash�ows,
const double& r) {

double S=0;
double D1=0;
for (int i=0;i<cash�ow times.size();i++){

S += cash�ows[i] * exp(−r*cash�ow times[i]);
D1 += cash�ow times[i] * cash�ows[i] * exp(−r*cash�ow times[i]);

};
return D1 / S;

};

C++ Code 3.12: Bond duration calculation with continously compounded interest and a �at term
structure

#include "fin_recipes.h"

double bonds duration macaulay(const vector<double>& cash�ow times,
const vector<double>& cash�ows,
const double& bond price) {

double y = bonds yield to maturity(cash�ow times, cash�ows, bond price);
return bonds duration(cash�ow times, cash�ows, y); // use YTM in duration

};

C++ Code 3.13: Calculating the Macaulay duration of a bond with continously compounded interest
and a �at term structure

#include <cmath>
#include "fin_recipes.h"

double bonds convexity(const vector<double>& times,
const vector<double>& cash�ows,
const double& r ) {

double C=0;
for (int i=0;i<times.size();i++){

C += cash�ows[i] * pow(times[i],2) * exp(−r*times[i]);
};
double B=bonds price(times, cash�ows,r);
return C/B;

};

C++ Code 3.14: Bond convexity calculation with continously compounded interest and a �at term
structure
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3.4 Further readings

The material in this chapter is covered in most standard textbooks of corporate �nance (e.g. Brealey
and Myers (2002) or Ross, Wester�eld, and Ja�e (2005)) and investments (e.g. Bodie, Kane, and Marcus
(2005), Haugen (2001) or ?). Shiller (1990) is a good reference on the term structure.

32



Chapter 4

The term structure of interest rates and an object lesson

In this chapter we expand on the analysis of the previous chapter by relaxing the �one interest rate�
assumption used there and allow the spot rates to change as you change the time you are discounting
over.

Recall that we said that the present value of a set of cash �ows is calculated as

PV =
N∑

i=1

dtiCti

-
0 t1 t2 tN

Ct1 Ct2 CtN

time

�dt1Ct1

�
dt2Ct2

�dtN
CtN

To make this applicable to cash �ows received at any future date t we potentially need an in�nite
number of discount factors dt. This is not feasible, so some lower dimensional way needs to be found to
approximate dt, but with more �exibility than the extremely strong assumption that there is one �xed
interest rate r, and that the discount factor for any time t is calculated as either dt = 1/(1+ r)t (discrete
compounding), or dt = e−rt (continuous compounding), which we used in the previous chapter.

In this chapter we �rst show that this approximation of the discount factors can be done in either terms
of discount factors directly, interest rates, or forward rates. Either of these are useful ways of formulating
a term structure, and either of them can be used, since there are one to one transformations between
either of these three. We then go on to demonstrate how a feature of C++, the ability to create an
abstract datatype as an object, or class, is very useful for the particular application of de�ning and using
a term structure. It is in fact this particular application, to create a term structure class, which really
illustrates the power of C++, and why you want to use an object oriented language instead of classical
langues like FORTRAN and C, or matrix languages like Gauss or Matlab for many �nancial calculations.

4.1 The interchangeability of discount factors, spot interest rates and for-

ward interest rates

The term structure can be speci�ed in terms of either discount factors, spot interest rates or forward
interest rates. A discount factor is the current price for a future (time t) payment of one dollar. To
�nd the current value PV of a cash �ow Ct, we calculate PV = dtCt. This discount factor can also be
speci�ed in terms of interest rates, where we let rt be the relevant interest rate (spot rate) for discounting
a t-period cash�ow. Then we know that the present value PV = e−rttCt. Since these two methods of
calculating the present value must be consistent,

PV = dtCt = e−rttCt

and hence

dt = e−rtt
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Note that this equation calculates dt given rt. Rearranging this equation we �nd the spot rate rt in
terms of discount factors

rt =
− ln(dt)

t

An alternative concept that is very useful is a forward interest rate, the yield on borrowing at some
future date t1 and repaying it at a later date t2. Let ft1,t2 be this interest rate. If we invest one dollar
today, at the current spot rate spot rate till period t1 and the forward rate for the period from t1 to t2
(which is what you would have to do to make an actual investment), you would get the following future
value

FV = ert1 t1eft1,t2 (t2−t1)

The present value of this forward value using the time t2 discount factor has to equal one:

dt2FV = 1

These considerations are enough to calculate the relevant transforms. The forward rate for borrowing at
time t1 for delivery at time t2 is calculated as

ft1,t2 =
− ln

(
dt2
dt1

)
t2 − t1

=
ln
(

dt1
dt2

)
t2 − t1

The forward rate can also be calculated directly from yields as

ft1,t2 = rt2

t2
t2 − t1

− rt1

t1
t2 − t1

dt = e−rtt

rt =
− ln(dt)

t

ft1,t2 =
− ln

(
dt1
dt2

)
t2 − t1

ft1,t2 = rt2

t2
t2 − t1

− rt1

t1
t2 − t1

Notation: dt discount factor for payment at time t, rt: spot rate applying to cash �ows at time t. ft1,t2 forward rate between
time t1 and t2, i.e. the interest rate you would agree on today on the future transactions.

Code 4.1 shows the implementation of these transformations.
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#include <cmath>
using namespace std;

double term structure yield from discount factor(const double& d t, const double& t) {
return (−log(d t)/t);

}

double term structure discount factor from yield(const double& r, const double& t) {
return exp(−r*t);

};

double term structure forward rate from discount factors(const double& d t1, const double& d t2,
const double& time) {

return (log (d t1/d t2))/time;
};

double term structure forward rate from yields(const double& r t1, const double& r t2,
const double& t1, const double& t2) {

return r t2*t2/(t2−t1)−r t1*t1/(t2−t1);
};

C++ Code 4.1: Term structure transformations

C++ program:

void test termstru transforms(){
double t1=1; double r t1=0.05; double d t1 = term structure discount factor from yield(r t1,t1);
cout << " a " << t1 << " period spot rate of " << r t1

<< " corresponds to a discount factor of " << d t1 << endl;
double t2=2; double d t2 = 0.9;
double r t2 = term structure yield from discount factor(d t2,t2);
cout << " a " << t2 << " period discount factor of " << d t2

<< " corresponds to a spot rate of " << r t2 << endl;
cout << " the forward rate between " << t1 << " and " << t2

<< " is " << term structure forward rate from discount factors(d t1,d t2,t2−t1)
<< " using discount factors " << endl;

cout << " and is " << term structure forward rate from yields(r t1,r t2,t1,t2)
<< " using yields " << endl;

};

Output from C++ program:

a 1 period spot rate of 0.05 corresponds to a discount factor of 0.951229

a 2 period discount factor of 0.9 corresponds to a spot rate of 0.0526803

the forward rate between 1 and 2 is 0.0553605 using discount factors

and is 0.0553605 using yields

Example 4.1: Term structure transformations

35



4.2 The term structure as an object

From the previous we see that the term structure can be described in terms of discount factors, spot
rates or forward rates, but that does not help us in getting round the dimensionality problem. If we
think in terms of discount factors, for a complete speci�cation of the current term structure one needs
an in�nite number of discount factors {dt}t∈R+ . It is perhaps easier to think about this set of discount
factors as a function d(t), that, given a nonnegative time t, returns the discount factor. Since we have
established that there are three equivalent ways of de�ning a term structure, discount factors, spot rates
and forward rates, we can therefore describe a term structure as a collection of three di�erent functions
that o�er di�erent views of the same underlying object.

A term structure is an abstract object that to the user should provide

• discount factors (prices of zero coupon bonds).

• spot rates (yields of zero coupon bonds).

• forward rates.

for any future maturity t. The user of a term structure will not need to know how the term structure is
implemented, all that is needed is an interface that speci�es the above three functions.

This is tailor made for being implemented as a C++ class. A class in C++ terms is a collection of data
structures and functions that operate on these data structures. In the present context it is a way of
specifying the three functions.

yield(t)

discount_factor(t)

forward_rate(t)

4.2.1 Base class

Code 4.2 shows how we describe the generic term structure as a C++ class.

#ifndef TERM STRUCTURE CLASS H
#de�ne TERM STRUCTURE CLASS H

class term structure class {
public:

virtual double yield(const double& t) const;
virtual double discount factor(const double& t) const;
virtual double forward rate(const double& t1, const double& t2) const;
virtual �term structure class();

};

#endif

C++ Code 4.2: Header �le describing the term_structure base class

The code for these functions uses algorithms that are described earlier in this chapter for transforming
between various views of the term structure. The term structure class merely provide a convenient
interface to these algorithms.

Note that the de�nitions of calculations are circular. Any given speci�c type of term structure has to
over-ride at least one of the functions yield, discount_factor or forward_rate.

We next consider two examples of speci�c term structures.
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#include "fin_recipes.h"

term structure class::�term structure class(){};

double term structure class::forward rate(const double& t1, const double& t2) const{
double d1 = discount factor(t1);
double d2 = discount factor(t2);
return term structure forward rate from discount factors(d1,d2,t2−t1);

};

double term structure class::yield(const double& t) const{
return term structure yield from discount factor(discount factor(t),t);

};

double term structure class::discount factor(const double& t) const {
return term structure discount factor from yield(yield(t),t);

};

C++ Code 4.3: Default code for transformations between discount factors, spot rates and forward rates
in a term structure class
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4.2.2 Flat term structure.

The �at term structure overrides both the yield member function of the base class.

The only piece of data this type of term structure needs is an interest rate.

#ifndef TERM STRUCTURE CLASS FLAT
#de�ne TERM STRUCTURE CLASS FLAT

#include "term_structure_class.h"

class term structure class �at : public term structure class {
private:

double R ; // interest rate
public:

term structure class �at(const double& r);
virtual �term structure class �at();

virtual double yield(const double& t) const;
// virtual double discount factor(const double& t) const;
void set int rate(const double& r);

};

#endif

C++ Code 4.4: Header �le for term structure class using a �at term structure

//#include ��n recipes.h�
//#include �term structure class �at.h�
#include "fin_recipes.h"

#include <iostream>
#include <cmath>
using namespace std;
term structure class �at::term structure class �at(const double& r){ R = r; };

term structure class �at::�term structure class �at(){};

double term structure class �at::yield(const double& T) const { if (T>=0) return R ; return 0; };

/*
double term structure class �at::discount factor(const double& T) const {

if (T>=0.0){ return exp(-R *T); }; return 0;
};

double term structure class �at::forward rate(const double& t1, const double& t2) const{
double d1 = discount factor(t1);
double d2 = discount factor(t2);
return term structure forward rate from discount factors(d1,d2,t2-t1);

};
*/

void term structure class �at::set int rate(const double& r) { R = r; };

C++ Code 4.5: Implementing term structure class using a �at term structure
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C++ program:

void test term structure class �at(){
term structure class �at ts(0.05);
double t1=1;
cout << "discount factor t1 = " << t1 << ":" << ts.discount factor(t1) << endl;
double t2=2;
cout << "discount factor t2 = " << t2 << ":" << ts.discount factor(t2) << endl;
cout << "spot rate t = " << t1 << ":" << ts.yield(t1) << endl;
cout << "spot rate t = " << t2 << ":" << ts.yield(t2) << endl;
cout << "forward rate from t1= " << t1 << " to t2= " << t2 << ":" << ts.forward rate(t1,t2) << endl;

};

Output from C++ program:

discount factor t1 = 1:0.951229

discount factor t2 = 2:0.904837

spot rate t = 1:0.05

spot rate t = 2:0.05

forward rate from t1= 1 to t2= 2:0.05
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4.3 Using the currently observed term structure.

To just use todays term structure, we need to take the observations of yields that is observed in the
market and use these to generate a term structure. The simplest possible way of doing this is to linearly
interpolate the currently observable zero coupon yields.

4.3.1 Linear Interpolation.

If we are given a set of yields for various maturities, the simplest way to construct a term structure is
by straightforward linear interpolation between the observations we have to �nd an intermediate time.
For many purposes this is �good enough.� This interpolation can be on either yields, discount factors or
forward rates, we illustrate the case of linear interpolation of spot rates.

Computer algorithm, linear interpolation of yields. Note that the algorithm assumes the yields
are ordered in increasing order of time to maturity.

#include <vector>
using namespace std;
#include "fin_recipes.h"

double term structure yield linearly interpolated(const double& time,
const vector<double>& obs times,
const vector<double>& obs yields) {

// assume the yields are in increasing time to maturity order.
int no obs = obs times.size();
if (no obs<1) return 0;
double t min = obs times[0];
if (time <= t min) return obs yields[0]; // earlier than lowest obs.

double t max = obs times[no obs−1];
if (time >= t max) return obs yields[no obs−1]; // later than latest obs

int t=1; // �nd which two observations we are between
while ( (t<no obs) && (time>obs times[t])) { ++t; };
double lambda = (obs times[t]−time)/(obs times[t]−obs times[t−1]);
// by ordering assumption, time is between t-1,t
double r = obs yields[t−1] * lambda + obs yields[t] * (1.0−lambda);
return r;

};

C++ Code 4.6: Interpolated term structure from spot rates
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C++ program:

void test termstru interpolated(){
vector<double> times;
vector<double> yields;
times.push back(0.1); times.push back(0.5); times.push back(1);
yields.push back(0.1); yields.push back(0.2); yields.push back(0.3);
times.push back(5); times.push back(10);
yields.push back(0.4); yields.push back(0.5);
cout << " yields at times: " << endl;
cout << " t=.1 " << term structure yield linearly interpolated(0.1,times,yields) << endl;
cout << " t=0.5 " << term structure yield linearly interpolated(0.5,times,yields) << endl;
cout << " t=1 " << term structure yield linearly interpolated(1,times,yields) << endl;
cout << " t=3 " << term structure yield linearly interpolated(3,times,yields) << endl;
cout << " t=5 " << term structure yield linearly interpolated(5,times,yields) << endl;
cout << " t=10 " << term structure yield linearly interpolated(10,times,yields) << endl;

};

Output from C++ program:

yields at times:

t=.1 0.1

t=0.5 0.2

t=1 0.3

t=3 0.35

t=5 0.4

t=10 0.5
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4.3.2 Interpolated term structure class.

The interpolated term structure implemented here uses a set of observations of yields as a basis, and
for observations in between observations will interpolate between the two closest. The following only
provides implementations of calculation of the yield, for the other two rely on the base class code.

There is some more book-keeping involved here, need to have code that stores observations of times and
yields.

#ifndef TERM STRUCTURE CLASS INTERPOLATED
#de�ne TERM STRUCTURE CLASS INTERPOLATED

#include "term_structure_class.h"

#include <vector>
using namespace std;

class term structure class interpolated : public term structure class {
private:

vector<double> times ; // use to keep a list of yields
vector<double> yields ;
void clear();

public:

term structure class interpolated();
term structure class interpolated(const vector<double>& times, const vector<double>& yields);
virtual �term structure class interpolated();
term structure class interpolated(const term structure class interpolated&);
term structure class interpolated operator= (const term structure class interpolated&);

int no observations() const { return times .size(); };
virtual double yield(const double& T) const;
void set interpolated observations(vector<double>& times, vector<double>& yields);

};

#endif

C++ Code 4.7: Header �le describing a term structure class using linear interpolation between spot
rates
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#include "fin_recipes.h"

void term structure class interpolated::clear(){
times .erase(times .begin(), times .end());
yields .erase(yields .begin(), yields .end());

};

term structure class interpolated::term structure class interpolated():term structure class(){clear();};

term structure class interpolated::term structure class interpolated(const vector<double>& in times,
const vector<double>& in yields) {

clear();
if (in times.size()!=in yields.size()) return;
times = vector<double>(in times.size());
yields = vector<double>(in yields.size());
for (int i=0;i<in times.size();i++) {

times [i]=in times[i];
yields [i]=in yields[i];

};
};

term structure class interpolated::�term structure class interpolated(){ clear();};

term structure class interpolated::term structure class interpolated(const term structure class interpolated& term) {
times = vector<double> (term.no observations());
yields = vector<double> (term.no observations());
for (int i=0;i<term.no observations();i++){

times [i] = term.times [i];
yields [i] = term.yields [i];

};
};

term structure class interpolated
term structure class interpolated::operator= (const term structure class interpolated& term) {

times = vector<double> (term.no observations());
yields = vector<double> (term.no observations());
for (int i=0;i<term.no observations();i++){

times [i] = term.times [i];
yields [i] = term.yields [i];

};
return (*this);

};

double term structure class interpolated::yield(const double& T) const {
return term structure yield linearly interpolated(T, times , yields );

};

void

term structure class interpolated::set interpolated observations(vector<double>& in times,
vector<double>& in yields) {

clear();
if (in times.size()!=in yields.size()) return;
times = vector<double>(in times.size());
yields = vector<double>(in yields.size());
for (int i=0;i<in times.size();i++) {

times [i]=in times[i];
yields [i]=in yields[i];

};
};

C++ Code 4.8: Term structure class using linear interpolation between spot rates
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C++ program:

void test term structure class interpolated(){
vector<double> times; times.push back(0.1);
vector<double> spotrates; spotrates.push back(0.05);
times.push back(1); times.push back(5);
spotrates.push back(0.07);spotrates.push back(0.08);
term structure class interpolated ts(times,spotrates);
double t1=1;
cout << "discount factor t1 = " << t1 << ":" << ts.discount factor(t1) << endl;
double t2=2;
cout << "discount factor t2 = " << t2 << ":" << ts.discount factor(t2) << endl;
cout << "spot rate t = " << t1 << ":" << ts.yield(t1) << endl;
cout << "spot rate t = " << t2 << ":" << ts.yield(t2) << endl;
cout << "forward rate from t1= " << t1 << " to t2= " << t2 << ":" << ts.forward rate(t1,t2) <<endl;

};

Output from C++ program:

discount factor t1 = 1:0.932394

discount factor t2 = 2:0.865022

spot rate t = 1:0.07

spot rate t = 2:0.0725

forward rate from t1= 1 to t2= 2:0.075
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4.4 Bond calculations with a general term structure and continous com-

pounding

Bond pricing with a continously compounded term structure

Coupon bond paying coupons at dates t1, t2, . . .:
Bond Price B0:

B0 =
∑

i

dtiCti =
∑

i

e−rti
tiCti

Duration D:

D =
1

B0

∑
i

tidtiCti

D =
1

B0

∑
i

tie
−rti

tiCti

D =
1

B0

∑
i

tie
−ytiCti

Yield to maturity y solves:

B0 =
∑

i

Cti
e−yti

Convexity Cx:

Cx =
1

B0

∑
i

t2i dtiCti

Cx =
1

B0

∑
i

t2i e
−rti

tiCti

Cx =
1

B0

∑
i

t2i e
−ytiCti

Codes 4.9 and 4.10 illustrates how one would calculate bond prices and duration if one has a term
structure class.

#include <vector>
using namespace std;

#include "fin_recipes.h"

double bonds price(const vector<double>& cash�ow times,
const vector<double>& cash�ows,
const term structure class& d) {

double p = 0;
for (unsigned i=0;i<cash�ow times.size();i++) {

p += d.discount factor(cash�ow times[i])*cash�ows[i];
};
return p;

};

C++ Code 4.9: Pricing a bond with a term structure class

References Shiller (1990) is a good reference on the use of the term structure.
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#include "fin_recipes.h"

double bonds duration(const vector<double>& cash�ow times,
const vector<double>& cash�ow amounts,
const term structure class& d ) {

double S=0;
double D1=0;
for (unsigned i=0;i<cash�ow times.size();i++){

S += cash�ow amounts[i] * d.discount factor(cash�ow times[i]);
D1 += cash�ow times[i] * cash�ow amounts[i] * d.discount factor(cash�ow times[i]);

};
return D1/S;

};

C++ Code 4.10: Calculating a bonds duration with a term structure class

#include "fin_recipes.h"

#include <cmath>

double bonds convexity(const vector<double>& cash�ow times,
const vector<double>& cash�ow amounts,
const term structure class& d ) {

double B=0;
double Cx=0;
for (unsigned i=0;i<cash�ow times.size();i++){

B += cash�ow amounts[i] * d.discount factor(cash�ow times[i]);
Cx += pow(cash�ow times[i],2) * cash�ow amounts[i] * d.discount factor(cash�ow times[i]);

};
return Cx/B;

};

C++ Code 4.11: Calculating a bonds convexity with a term structure class

C++ program:

void test term structure class bond calculations(){
vector <double> times; times.push back(1); times.push back(2);
vector <double> cash�ows; cash�ows.push back(10); cash�ows.push back(110);
term structure class �at ts�at(0.1);
cout << " price = " << bonds price (times, cash�ows, ts�at) << endl;
cout << " duration = " << bonds duration(times, cash�ows, ts�at) << endl;
cout << " convexity = " << bonds convexity(times, cash�ows, ts�at) << endl;

};

Output from C++ program:

price = 99.1088

duration = 1.9087

convexity = 3.72611
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Chapter 5

Futures algoritms.

In this we discuss algoritms used in valuing futures contracts.

5.1 Pricing of futures contract.

The futures price of an asset without payouts is the future value of the current price of the assset.

ft = er(T−t)St

#include <cmath>
using namespace std;

double futures price(const double& S, // current price of underlying asset
const double& r, // risk free interest rate
const double& time to maturity) {

return exp(r*time to maturity)*S;
};

C++ Code 5.1: Futures price

C++ program:

void test futures price(){
double S=100; double r=0.10; double time=0.5;
cout << " futures price = " << futures price(S,r, time) << endl;

};

Output from C++ program:

futures price = 105.127

Example 5.1: Futures price
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Chapter 6

Binomial option pricing

Option and other derivative pricing is one of the prime �success stories� of modern �nance. An option
is a derivative security, the cash �ows from the security is a function of the price of some other security,
typically called the underlying security. A call option is a right, but not obligation, to buy a given
quantity of the underlying security at a given price, called the exercise price K, within a certain time
interval. A put option is the right, but not obligation, to sell a given quantity of the underlying security
to an agreed excercise price within a given time interval. If an option can only be exercised (used) at a
given date (the time interval is one day), the option is called an European Option. If the option can be
used in a whole time period up to a given date, the option is called American.

An option will only be used if it is valuable to the option holder. In the case of a call option, this is
when the exercise price K is lower than the price one alternatively could buy the underlying security
for, which is the current price of the underlying security. Hence, options have never negative cash �ows
at maturity. Thus, for anybody to be willing to o�er an option, they must have a cost when entered
into. This cost, or price, is typically called an option premium. As notation, let C signify the price of
a call option, P the price of a put option and S the price of the underlying security. All of these prices
are indexed by time. We typically let 0 be �now� and T the �nal maturity date of the option. From the
de�nition of the options, it is clear that at their last possible exercise date, the maturity date, they have
cash �ows.

CT = max(0, ST −K)

PT = max(0,K − ST )

The challenge of option pricing is to determine the option premium C0 and P0.

All pricing considers that the cash�ows from the derivative is a direct function of the price of the
underlying security. Pricing can therefore be done relative to the price of the underlying security. To
price options it is necessary to make assumptions about the probability distribution of movements of
the underlying security. We start by considering this in a particularly simple framework, the binomial
assumption. The price of the underlying is currently S0. The price can next period only take on two
values, Su and Sd.

S0
��

������*

HH
HHHHHHj

Su

Sd

If one can �nd all possible future �states,� an enumeration of all possibilities, one can value a security by
constructing arti�cial �probabilities�, called �state price probabilities,� which one use to �nd an arti�cial
expected value of the underlying security, which is then discounted at the risk free interest rate. The
binomial framework is particularly simple, since there are only two possible states. If we �nd the
�probability� q of one state, we also �nd the probability of the other as (1−q). Equation 6.1 demonstrates
this calculation for the underlying security.

S0 = e−r(qSu + (1− q)Sd) (6.1)

Now, any derivative security based on this underlying security can be priced using the same �probability�
q. The contribution of binomial option pricing is in actually calculating the number q. To do valuation,
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start by introducing constants u and d implicitly de�ned by Su = uS0 and Sd = dS0, and you get a
process as illustrated in �gure 6.1.

S0
�

�
�

��*

H
H

H
HHj

uS0

dS0

Figure 6.1: Binomial Tree

and calculate the arti�cal �probability� q as

q =
er − d

u− d

The price of a one-period call option in a binomial framework is shown in formula 6.1 and implemented
in code 6.1.

Cu = max(0, Su −K)

Cd = max(0, Sd −K)

C0 = e−r (qCu + (1− q)Cd)

q =
er − d

u− d

Su = uS0 and Sd = dS0 are the possible values for the underlying security next period, u and d are constants, r is the (continously
compounded) risk free interest rate and K is the call option exercise price.

Formula 6.1: The single period binomal call option price

#include <cmath> // standard mathematical library
#include <algorithm> // de�ning the max() operator
using namespace std;

double option price call european binomial single period( const double& S, // spot price
const double& X, // exercice price
const double& r, // interest rate (per period)
const double& u, // up movement
const double& d){ // down movement

double p up = (exp(r)−d)/(u−d);
double p down = 1.0−p up;
double c u = max(0.0,(u*S−X));
double c d = max(0.0,(d*S−X));
double call price = exp(−r)*(p up*c u+p down*c d);
return call price;

};

C++ Code 6.1: Binomial European, one period

The �state price probability� q is found by an assumption of no arbitrage opportunities. If one has the
possibility of trading in the underlying security and a risk free bond, it is possible to create a portfolio of
these two assets that exactly duplicates the future payo�s of the derivative security. Since this portfolio
has the same future payo� as the derivative, the price of the derivative has to equal the cost of the
duplicating portfolio. Working out the algebra of this, one can �nd the expression for q as the function
of the up and down movements u and d.
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Exercise 11.

The price of the underlying security follows the binomial process

S0
�

�
�

��*
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H
HHj

Su

Sd

A one period call option has payo�s

C0
�

�
�

��*

H
H

H
HHj

Cu = max(0, Su −K)

Cd = max(0, Sd −K)

1. Show how one can combine a position in the underlying security with a position in risk free bonds to
create a portfolio which exactly duplicates the payo�s from the call.

2. Use this result to show the one period pricing formula for a call option shown in formula 6.1.

6.1 Multiperiod binomial pricing

Of course, an assumption of only two possible future states next period is somewhat unrealistic, but if
we iterate this assumption, and assume that every date, there are only two possible outcomes next date,
but then, for each of these two outcomes, there is two new outcomes, as illustrated in the next �gure:
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uSt

dSt
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����
����*
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HHHHH

HHj

u(uSt) = uuSt

d(uSt) = u(dSt) = udSt

d(dSt) = ddSt

Iterating this idea a few times more, the number of di�erent terminal states increases markedly, and we
get closer to a realistic distribution of future prices of the underlying at the terminal date. Note that a
crucial assumption to get a picture like this is that the factors u and d are the same on each date.
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Pricing in a setting like this is done by working backwards, starting at the terminal date. Here we know
all the possible values of the underlying security. For each of these, we calculate the payo�s from the
derivative, and �nd what the set of possible derivative prices is one period before. Given these, we can
�nd the option one period before this again, and so on. Working ones way down to the root of the tree,
the option price is found as the derivative price in the �rst node.

For example, suppose we have two periods, and price a two period call option with exercise price K.
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First step: Find terminal payo�s of derivative security:
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Cuu = max(0, Suu − X)

Cdu = max(0, duS − X)

Cdd − max(0, ddS − X)
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Next step: Find the two possible call prices at time 1:

Cu = e−r(qCuu + (1− q)Cud)

Cd = e−r(qCud + (1− q)Cdd)

C0
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H
HHj

Cu

Cd

Final step: Using the two possible payo�s at time 1, Cu and Cd, �nd option value at time 0:

C0 = e−r(qCu + (1− q)Cd)

Thus, binomial pricing really concerns �rolling backward� in a binomial tree, and programming therefore
concerns an e�cient way of traversing such a tree. The obvious data structure for describing such a tree
is shown in code 6.2, where the value in each node is calculated from �nding out the number of up and
down steps are used to get to the particular node.

#include <vector>
#include <cmath>
using namespace std;

vector< vector<double> > binomial tree(const double& S0,
const double& u,
const double& d,
const int& no steps){

vector< vector<double> > tree;
for (int i=1;i<=no steps;++i){

vector<double> S(i);
for (int j=0;j<i;++j){

S[j] = S0*pow(u,j)*pow(d,i−j−1);
};
tree.push back(S);

};
return tree;

};

C++ Code 6.2: Building a binomial tree

Exercise 12.

In terms of computational e�ciency the approcach of code 6.2 will not be optimal, since it requires a lot
of calls to the pow() functional call. More e�cient would be to carry out the tree building by doing the
multiplication from the previous node, for example the j'th vector is the j − 1'th vector times u, and then
one need to add one more node by multiplying the lowest element by d.

1. Implement such an alternative tree building procedure.

Basing the recursive calculation of a derivative price on a triangular array structure as shown in code 6.2
is the most natural approach, but with some cleverness based on understanding the structure of the
binomial tree, we can get away with the more e�cienent algorithm that is shown in code 6.3. Note that
here we only use one vector<double>, not a triangular array as built above.

Exercise 13.

Implement pricing of single and multi period binomial put options.

Further reading The derivation of the single period binomial is e.g. shown in Bossaerts and Ødegaard
(2001). Hull (2006) and McDonald (2006) are standard references.
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#include <cmath> // standard mathematical library
#include <algorithm> // de�ning the max() operator
#include <vector> // STL vector templates
using namespace std;

double option price call european binomial multi period given ud(const double& S, // spot price
const double& K, // exercice price
const double& r, // interest rate (per period)
const double& u, // up movement
const double& d, // down movement
const int& no periods){ // no steps in binomial tree

double Rinv = exp(−r); // inverse of interest rate
double uu = u*u;
double p up = (exp(r)−d)/(u−d);
double p down = 1.0−p up;
vector<double> prices(no periods+1); // price of underlying
prices[0] = S*pow(d, no periods); // �ll in the endnodes.
for (int i=1; i<=no periods; ++i) prices[i] = uu*prices[i−1];
vector<double> call values(no periods+1); // value of corresponding call
for (int i=0; i<=no periods; ++i) call values[i] = max(0.0, (prices[i]−K)); // call payo�s at maturity
for (int step=no periods−1; step>=0; −−step) {

for (int i=0; i<=step; ++i) {
call values[i] = (p up*call values[i+1]+p down*call values[i])*Rinv;

};
};
return call values[0];

};

C++ Code 6.3: Binomial multiperiod pricing of European call option

Let S = 100.0, K = 100.0, r = 0.025, u = 1.05 and d = 1/u.

1. Price one and two period European Call options.

C++ program:

void test bin eur call ud (){
double S = 100.0; double K = 100.0; double r = 0.025;
double u = 1.05; double d = 1/u;
cout << " one period european call = "

<< option price call european binomial single period(S,K,r,u,d) << endl;
int no periods = 2;
cout << " two period european call = "

<< option price call european binomial multi period given ud(S,K,r,u,d,no periods) << endl;

};

Output from C++ program:

one period european call = 3.64342

two period european call = 5.44255
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Chapter 7

Basic Option Pricing, the Black Scholes formula

The pricing of options and related instruments has been a major breakthrough for the use of �nancial
theory in practical application. Since the original papers of Black and Scholes (1973) and Merton (1973),
there has been a wealth of practical and theoretical applications. We will now consider the orginal Black
Scholes formula for pricing options, how it is calculated and used. For the basic intuition about option
pricing the reader should �rst read the discussion of the binomial model in the previous chapter, as that
is a much better environment for understanding what is actually calculated.

An option is a derivative security, its value depends on the value, or price, of some other underlying
security, called the underlying security.. Let S denote the value, or price, of this underlying security.
We need to keep track of what time this price is observed at, so let St denote that the price is observed
at time t. A call (put) option gives the holder the right, but not the obligation, to buy (sell) some
underlying asset at a given price K, called the exercise price, on or before some given date T . If the
option is a so called European option, it can only be used (exercised) at the maturity date. If the option
is of the so called American type, it can be used (exercised) at any date up to and including the maturity
date T . If exercised at time T , a call option provides payo�

CT = max(0, ST −K)

and a put option provides payo�

PT = max(0,K − ST )

The Black Scholes formulas provides analytical solutions for European put and call options, options
which can only be exercised at the options maturity date. Black and Scholes showed that the additional
information needed to price the option is the (continously compounded) risk free interest rate r, the
variability of the underlying asset, measured by the standard deviation σ of (log) price changes, and
the time to maturity (T − t) of the option, measured in years. The original formula was derived under
the assumption that there are no payouts, such as stock dividends, coming from the underlying security
during the life of the option. Such payouts will a�ection option values, as will become apparent later.

7.1 The formula

Formula 7.1 gives the exact formula for a call option, and the calculation of the same call option is shown
in code 7.1
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c = SN(d1)−Ke−r(T−t)N(d2)

where

d1 =
ln
(

S
K

)
+ (r + 1

2σ2)(T − t)
σ
√

T − t

and

d2 = d1 − σ
√

T − t

Alternatively one can calculate d1 and d2 as

d1 =
ln
(

S
K

)
+ r(T − t)

σ
√

T − t
+

1
2
σ
√

T − t

d2 =
ln
(

S
K

)
+ r(T − t)

σ
√

T − t
− 1

2
σ
√

T − t

S is the price of the underlying security, K the exercise price, r the (continously compounded) risk free interest rate, σ the standard
deviation of the underlying asset, t the current date, T the maturity date, T − t the time to maturity for the option and N(·) the
cumulative normal distribution.

Formula 7.1: The Black Scholes formula

#include <cmath> // mathematical C library
#include "normdist.h" // the calculation of the cumularive normal distribution

double option price call black scholes(const double& S, // spot (underlying) price
const double& K, // strike (exercise) price,
const double& r, // interest rate
const double& sigma, // volatility
const double& time) { // time to maturity

double time sqrt = sqrt(time);
double d1 = (log(S/K)+r*time)/(sigma*time sqrt)+0.5*sigma*time sqrt;
double d2 = d1−(sigma*time sqrt);
return S*N(d1) − K*exp(−r*time)*N(d2);

};

C++ Code 7.1: Price of European call option using the Black Scholes formula

function c = black scholes call(S,K,r,sigma,time)
time sqrt = sqrt(time);
d1 = (log(S/K)+r*time)/(sigma*time sqrt)+0.5*sigma*time sqrt;
d2 = d1−(sigma*time sqrt);
c = S * normal cdf(d1) − K * exp(−r*time) * normal cdf(d2);
endfunction

MatlabCode 7.1: Price of European call option using the Black Scholes formula
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Stock in company XYZ is currently trading at 50. Consider a call option on XYZ stock with an exercise
price of K = 50 and time to maturity of 6 months. The volatility of XYZ stock has been estimated to be
σ = 30%. The current risk free interest rate (with continous compounding) for six month borrowing is
10%. To calculate the price of this option we use the Black Scholes formula with inputs S = 50, K = 50,
r = 0.10, σ = 0.3 and (T − t) = 0.5.

C++ program:

void test option price call black scholes(){
double S = 50; double K = 50; double r = 0.10;
double sigma = 0.30; double time=0.50;
cout << " Black Scholes call price = ";
cout << option price call black scholes(S, K , r, sigma, time) << endl;

};

Output from C++ program:

Black Scholes call price = 5.45325

Matlabprogram:

#PS1 = ">> ";
echo

S=100;
K=100;
r=0.1;
sigma=0.1;
time=1;
c=black scholes call(S,K,r,sigma,time)

Output from Matlabprogram:

Example 7.1: Example using the Black Scholes formula
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Exercise 14.

The Black Scholes price for a put option is:

p = Ke−r(T−t)N(−d2)− SN(−d1)

where d1 and d2 are as for the call option:

d1 =
ln
(

S
X

)
+ (r + 1

2σ2)(T − t)
σ
√

T − t

d2 = d1 − σ
√

T − t,

S is the price of the underlying secrutity, K the exercise price, r the (continously compounded) risk free
interest rate, σ the standard deviation of the underlying asset, T − t the time to maturity for the option and
N(·) the cumulative normal distribution.

1. Implement this formula.

7.2 Understanding the why's of the formula

To get some understanding of the Black Scholes formula and why it works will need to delve in some
detail into the mathematics underlying its derivation. It does not help that there are a number of ways
to prove the Black Scholes formula, depending on the setup. As it turns out, two of these ways are
important to understand for computational purposes, the original Black Scholes continous time way, and
the �limit of a binomial process� way of Cox, Ross, and Rubinstein (1979).

7.2.1 The original Black Scholes analysis

The primary assumption underlying the Black Scholes analyis concerns the stochastic process governing
the price of the underlying asset. The price of the underlying asset, S, is assumed to follow a geometric
Brownian Motion process, conveniently written in either of the shorthand forms

dS = µSdt + σSdZ

or

dS

S
= µdt + σdZ

where µ and σ are constants, and Z is Brownian motion.

Using Ito's lemma, the assumption of no arbitrage, and the ability to trade continuously, Black and
Scholes showed that the price of any contingent claim written on the underlying must solve the partial
di�erential equation (7.1).

∂f

∂S
rS +

∂f

∂t
+

1
2

∂2f

∂S2
σ2S2 = rf (7.1)

For any particular contingent claim, the terms of the claim will give a number of boundary conditions

that determines the form of the pricing formula.

The pde given in equation (7.1), with the boundary condition cT = max(0, ST −K) was shown by Black
and Scholes to have an analytical solution of functional form shown in the Black Scoles formula 7.1.

7.2.2 The limit of a binomial case

Another is to use the limit of a binomial process (Cox et al., 1979). The latter is particularly interesting,
as it allows us to link the Black Scholes formula to the binomial, allowing the binomial framework to be
used as an approximation.
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7.2.3 The representative agent framework

A �nal way to show the BS formula to assume a representative agent and lognormality as was done in
Rubinstein (1976).

7.3 Partial derivatives.

In trading of options, a number of partial derivatives of the option price formula is important.

7.3.1 Delta

The �rst derivative of the option price with respect to the price of the underlying security is called the
delta of the option price. It is the derivative most people will run into, since it is important in hedging
of options.

∂c

∂S
= N(d1)

Code 7.2 shows the calculation of the delta for a call option.

#include <cmath>
#include "normdist.h"

double option price delta call black scholes(const double& S, // spot price
const double& K, // Strike (exercise) price,
const double& r, // interest rate
const double& sigma, // volatility
const double& time){ // time to maturity

double time sqrt = sqrt(time);
double d1 = (log(S/K)+r*time)/(sigma*time sqrt) + 0.5*sigma*time sqrt;
double delta = N(d1);
return delta;

};

C++ Code 7.2: Calculating the delta of the Black Scholes call option price

7.3.2 Other Derivatives

The remaining derivatives are more seldom used, but all of them are relevant. All of them are listed in
formula 7.3.2.

The calculation of all of these partial derivatives for a call option is shown in code 7.3
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Delta (∆)

∆ =
∂c

∂S
= N(d1)

Gamma (Γ)

∂2c

∂S2
=

n(d1)
Sσ

√
T − t

Theta (Θ) (careful about which of these you want)

∂c

∂(T − t)
= Sn(d1)

1
2
σ

1√
T − t

+ rKe−r(T−t)N(d2)

∂c

∂t
= −Sn(d1)

1
2
σ

1√
T − t

− rKe−r(T−t)N(d2)

Vega

∂c

∂σ
= S

√
T − tn(d1)

Rho (ρ)

∂c

∂r
= K(T − t)e−r(T−t)N(d2)

S is the price of the underlying security, K the exercise price, r the (continously compounded) risk free interest rate, σ the standard
deviation of the underlying asset, t the current date, T the maturity date and T − t the time to maturity for the option. n(·) is
the normal distribution function

“
n(z) = 1√

2π
e−

1
2 z2”

and N(·) the cumulative normal distribution
“

N(z) =
R z
−∞ n(t)dt

”
.

Formula 7.2: Partial derivatives of the Black Scholes call option formula

#include <cmath>
#include "normdist.h"

using namespace std;

void option price partials call black scholes( const double& S, // spot price
const double& K, // Strike (exercise) price,
const double& r, // interest rate
const double& sigma, // volatility
const double& time, // time to maturity
double& Delta, // partial wrt S
double& Gamma, // second prt wrt S
double& Theta, // partial wrt time
double& Vega, // partial wrt sigma
double& Rho){ // partial wrt r

double time sqrt = sqrt(time);
double d1 = (log(S/K)+r*time)/(sigma*time sqrt) + 0.5*sigma*time sqrt;
double d2 = d1−(sigma*time sqrt);
Delta = N(d1);
Gamma = n(d1)/(S*sigma*time sqrt);
Theta =− (S*sigma*n(d1))/(2*time sqrt) − r*K*exp( −r*time)*N(d2);
Vega = S * time sqrt*n(d1);
Rho = K*time*exp(−r*time)*N(d2);

};

C++ Code 7.3: Calculating the partial derivatives of a Black Scholes call option
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Consider the same call option as in the previous example. The option matures 6 months from now, at
which time the holder of the option can recive one unit of the underlying security by paying the exercise
price of K = 50. The current price of the underlying security is S = 50. The volatility of the underlying
security is given as σ = 30%. The current risk free interest rate (with continous compounding) for six
month borrowing is 10%. To calculate the partial derivatives we therefore use inputs S = 50, K = 50,
r = 0.10, σ = 0.3 and (T − t) = 0.5.

C++ program:

void test black scholes partials call(){
cout << " Black Scholes call partial derivatives " << endl;
double S = 50; double K = 50; double r = 0.10;
double sigma = 0.30; double time=0.50;
double Delta, Gamma, Theta, Vega, Rho;
option price partials call black scholes(S,K,r,sigma, time,

Delta, Gamma, Theta, Vega, Rho);
cout << " Delta = " << Delta << endl;
cout << " Gamma = " << Gamma << endl;
cout << " Theta = " << Theta << endl;
cout << " Vega = " << Vega << endl;
cout << " Rho = " << Rho << endl;

};

Output from C++ program:

Black Scholes call partial derivatives

Delta = 0.633737

Gamma = 0.0354789

Theta = -6.61473

Vega = 13.3046

Rho = 13.1168

Example 7.2: Example calculating partial derivatives using the Black Scholes formula
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7.3.3 Implied Volatility.

In calculation of the option pricing formulas, in particular the Black Scholes formula, the only unknown
is the standard deviation of the underlying stock. A common problem in option pricing is to �nd the
implied volatility, given the observed price quoted in the market. For example, given c0, the price of a
call option, the following equation should be solved for the value of σ

c0 = c(S, K, r, σ, T − t)

Unfortunately, this equation has no closed form solution, which means the equation must be numerically
solved to �nd σ. What is probably the algorithmic simplest way to solve this is to use a binomial search
algorithm, which is implemented in the following. We start by bracketing the sigma by �nding a high
sigma that makes the BS price higher than the observed price, and then, given the bracketing interval,
we search for the volatility in a systematic way. Code 7.4 shows such a calculation.

#include <cmath>
#include "fin_recipes.h"

double option price implied volatility call black scholes bisections(const double& S,
const double& K,
const double& r,
const double& time,
const double& option price){

if (option price<0.99*(S−K*exp(−time*r))) { // check for arbitrage violations.
return 0.0; // Option price is too low if this happens

};

// simple binomial search for the implied volatility.
// relies on the value of the option increasing in volatility
const double ACCURACY = 1.0e−5; // make this smaller for higher accuracy
const int MAX ITERATIONS = 100;
const double HIGH VALUE = 1e10;
const double ERROR = −1e40;

// want to bracket sigma. �rst �nd a maximum sigma by �nding a sigma
// with a estimated price higher than the actual price.
double sigma low=1e−5;
double sigma high=0.3;
double price = option price call black scholes(S,K,r,sigma high,time);
while (price < option price) {

sigma high = 2.0 * sigma high; // keep doubling.
price = option price call black scholes(S,K,r,sigma high,time);
if (sigma high>HIGH VALUE) return ERROR; // panic, something wrong.

};
for (int i=0;i<MAX ITERATIONS;i++){

double sigma = (sigma low+sigma high)*0.5;
price = option price call black scholes(S,K,r,sigma,time);
double test = (price−option price);
if (fabs(test)<ACCURACY) { return sigma; };
if (test < 0.0) { sigma low = sigma; }
else { sigma high = sigma; }

};
return ERROR;

};

C++ Code 7.4: Calculation of implied volatility of Black Scholes using bisections

Instead of this simple bracketing, which is actually pretty fast, and will (almost) always �nd the solution,
we can use the Newton�Raphson formula for �nding the root of an equation in a single variable. The
general description of this method starts with a function f() for which we want to �nd a root.

f(x) = 0.
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The function f() needs to be di�erentiable. Given a �rst guess x0, iterate by

xi+1 = xi −
f(xi)
f ′(xi)

until

|f(xi)| < ε

where ε is the desired accuracy.1

In our case

f(x) = cobs − cBS(σ)

and, each new iteration will calculate

σi+1 = σi +
cobs − cBS(σi)

−∂cBS()
∂σ

Code 7.5 shows the calculation of implied volatility using Newton-Raphson.

#include "fin_recipes.h"

#include "normdist.h"

#include <cmath>
#include <iostream>
double option price implied volatility call black scholes newton(const double& S,

const double& K,
const double& r,
const double& time,
const double& option price) {

if (option price<0.99*(S−K*exp(−time*r))) { // check for arbitrage violations. Option price is too low if this happens
return 0.0;

};

const int MAX ITERATIONS = 100;
const double ACCURACY = 1.0e−5;
double t sqrt = sqrt(time);

double sigma = (option price/S)/(0.398*t sqrt); // �nd initial value
for (int i=0;i<MAX ITERATIONS;i++){

double price = option price call black scholes(S,K,r,sigma,time);
double di� = option price −price;
if (fabs(di�)<ACCURACY) return sigma;
double d1 = (log(S/K)+r*time)/(sigma*t sqrt) + 0.5*sigma*t sqrt;
double vega = S * t sqrt * n(d1);
sigma = sigma + di�/vega;

};
return −99e10; // something screwy happened, should throw exception

};

C++ Code 7.5: Calculation of implied volatility of Black Scholes using Newton-Raphson

Note that to use Newton-Raphson we need the derivative of the option price. For the Black-Scholes
formula this is known, and we can use this. But for pricing formulas like the binomial, where the partial
derivatives are not that easy to calculate, simple bisection is the preferred algorithm.

1For further discussion of the Newton-Raphson formula and bracketing, a good source is chapter 9 of Press et al. (1992)

62



Consider the same call option as in the previous examples. The option matures 6 months from now, at
which time the holder of the option can recive one unit of the underlying security by paying the exercise
price of K = 50. The current price of the underlying security is S = 50. The current risk free interest
rate (with continous compounding) for six month borrowing is 10%. To calculate we therefore use inputs
S = 50, K = 50, r = 0.10 and (T − t) = 0.5.
We are now told that the current option price is C = 2.5. The implied volatility is the σ which, input in
the Black Scholes formula with these other inputs, will produce an option price of C = 2.5.

C++ program:

void test black scholes implied volatility(){
double S = 50; double K = 50; double r = 0.10; double time=0.50;
double C=2.5;
cout << " Black Scholes implied volatility using Newton search = ";
cout << option price implied volatility call black scholes newton(S,K,r,time,C) << endl;
cout << " Black Scholes implied volatility using bisections = ";
cout << option price implied volatility call black scholes bisections(S,K,r,time,C) << endl;

};

Output from C++ program:

Black Scholes implied volatility using Newton search = 0.0500427

Black Scholes implied volatility using bisections = 0.0500419

Example 7.3: Example �nding implied volatility using the Black Scholes formula
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Chapter 8

Warrants

A warrant is an option-like security on equity, but it is issued by the same company which has issued
the equity, and when a warrant is exercised, a new stock is issued. This new stock is issued at a the
warrant strike price, which is lower than the current stock price (If it wasn't the warrant would not be
exercised.) Since the new stock is a a fractional right to all cash�ows, this stock issue waters out, or
dilutes, the equity in a company. The degree of dilution is a function of how many warrants are issued.

8.1 Warrant value in terms of assets

Let K be the strike price, n the number of shares outstanding and m the number of warrants issues.
Assume each warrant is for 1 new share, and let At be the current asset value of �rm. Suppose all
warrants are exercised simultaneously. Then the assets of the �rm increase by the number of warrants
times the strike price of the warrant.

At + mK,

but this new asset value is spread over more shares, since each exercised warrant is now an equity. The
assets of the �rm is spread over all shares, hence each new share is worth:

At + mK

m + n

making each exercised warrant worth:

At + mK

m + n
−K =

n

m + n

(
At

n
−K

)
If we knew the current value of assets in the company, we could value the warrant in two steps:

1. Value the option using the Black Scholes formula and At

n as the current stock price.

2. Multiply the resulting call price with n
m+n .

If we let Wt be the warrant value, the above arguments are summarized as:

Wt =
n

n + m
CBS

(
A

n
,K, σ, r, (T − t)

)
,

where CBS(·) is the Black Scholes formula.

8.2 Valuing warrants when observing the stock value

However, one does not necessarily observe the asset value of the �rm. Typically one only observes the
equity value of the �rm. If we let St be the current stock price, the asset value is really:

At = nSt + mWt

Using the stock price, one would value the warrant as

Wt =
n

n + m
CBS

(
nSt + mWt

n
,K, σ, r, (T − t)

)
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or

Wt =
n

n + m
CBS

(
St +

m

n
Wt,K, σ, r, (T − t)

)
Note that this gives the value of Wt as a function of Wt. One need to solve this equation numerically to
�nd Wt.

The numerical solution for Wt is done using the Newton-Rhapson method. Let

g(Wt) = Wt −
n

n + m
CBS

(
St +

m

n
Wt,K, σ, r, (T − t)

)
Starting with an initial guess for the warrant value W o

t , the Newton-Rhapson method is that one iterates
as follows

W i
t = W i−1

t − g(W i−1
t )

g′(W i−1
t )

,

where i signi�es iteration i, until the criterion function g(W i−1
t ) is below some given accuracy ε. In this

case

g′(Wt) = 1− m

m + n
N(d1)

where

d1 =
ln
(

St+
m
n Wt

K

)
+ (r + 1

2σ2)(T − t)

σ
√

T − t

An obvious starting value is to set calculate the Black Scholes value using the current stock price, and
multiplying it with m

m+n .

Code 8.1 implements this calculation.

#include "fin_recipes.h"

#include "normdist.h"

#include <cmath>

double warrant price adjusted black scholes(const double& S, // current stock price
const double& K, // strike price
const double& r, // interest rate
const double& sigma, // volatility
const double& time, // time to maturity
const double& m, // number of warrants outstanding
const double& n){ // number of shares outstanding

const double epsilon=0.00001;
double time sqrt = sqrt(time);
double w = (n/(n+m))*option price call black scholes(S,K,r,sigma,time);
double g = w−(n/(n+m))*option price call black scholes(S+(m/n)*w,K,r,sigma,time);
while (fabs(g)>epsilon) {

double d1 = (log((S+(m/n))/K)+r*time)/(sigma*time sqrt)+0.5*sigma*time sqrt;
double gprime = 1−(m/n)*N(d1);
w=w−g/gprime;
g = w−(n/(n+m))*option price call black scholes(S+(m/n)*w,K,r,sigma,time);

};
return w;

};

C++ Code 8.1: Adjusted Black Scholes value for a Warrant

8.3 Readings

McDonald (2006) and Hull (2006) are general references. A problem with warrants is that exercise of all
warrants simultaneously is not necessarily optimal.
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A stock is currently priced at S = 48. Consider warrants on the same company with exercise price
K = 40 and time to maturity of six months. The company has n = 10000 shares outstanding, and
has issued m = 1000 warrants. The current (continously compounded) risk free interest rate is 8%.
Determine the current warrant price.

C++ program:

void test warrant price adjusted black scholes(){
double S = 48; double K = 40; double r = 0.08; double sigma = 0.30;
double time = 0.5; double m = 1000; double n = 10000;
double w = warrant price adjusted black scholes(S,K,r,sigma, time, m, n);
cout << " warrant price = " << w << endl;

};

Output from C++ program:

warrant price = 10.142

Example 8.1: Example warrant pricing

Press et al. (1992) discusses the Newton-Rhapson method for root �nding.

66



Chapter 9

Extending the Black Scholes formula

9.1 Adjusting for payouts of the underlying.

For options on other �nancial instruments than stocks, we have to allow for the fact that the underlying
may have payouts during the life of the option. For example, in working with commodity options, there
is often some storage costs if one wanted to hedge the option by buying the underlying.

9.1.1 Continous Payouts from underlying.

The simplest case is when the payouts are done continuously. To value an European option, a simple
adjustment to the Black Scholes formula is all that is needed. Let q be the continuous payout of the
underlying commodity.

Call and put prices for European options are then given by formula 9.1, which are implemented in
code 9.1.

c = Se−q(T−t)N(d1)−Ke−r(T−t)N(d2)

where

d1 =
ln
(

S
K

)
+ (r − q + 1

2σ2)(T − t)
σ
√

T − t

d2 = d1 − σ
√

T − t

S is the price of the underlying secrutity, K the exercise price, r the risk free interest rate, q the (continous) payout and σ the
standard deviation of the underlying asset, t the current date, T the maturity date, T − t the time to maturity for the option and
N(·) the cumulative normal distribution.

Formula 9.1: Analytical prices for European call option on underlying security having a payout of q

#include <cmath> // mathematical library
#include "normdist.h" // this de�nes the normal distribution
using namespace std;

double option price european call payout( const double& S, // spot price
const double& X, // Strike (exercise) price,
const double& r, // interest rate
const double& q, // yield on underlying
const double& sigma, // volatility
const double& time) { // time to maturity

double sigma sqr = pow(sigma,2);
double time sqrt = sqrt(time);
double d1 = (log(S/X) + (r−q + 0.5*sigma sqr)*time)/(sigma*time sqrt);
double d2 = d1−(sigma*time sqrt);
double call price = S * exp(−q*time)* N(d1) − X * exp(−r*time) * N(d2);
return call price;

};

C++ Code 9.1: Option price, continous payout from underlying

Exercise 15.

The price of a put on an underlying security with a continous payout of q is:

p = Ke−r(T−t)N(−d2)− Se−q(T−t)N(−d1)
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1. Implement this formula.

9.1.2 Dividends.

A special case of payouts from the underlying security is stock options when the stock pays dividends.
When the stock pays dividends, the pricing formula is adjusted, because the dividend changes the value
of the underlying.

The case of continuous dividends is easiest to deal with. It corresponds to the continuous payouts we
have looked at previously. The problem is the fact that most dividends are paid at discrete dates.

European Options on dividend-paying stock.

To adjust the price of an European option for known dividends, we merely subtract the present value of
the dividends from the current price of the underlying asset in calculating the Black Scholes value.

#include <cmath> // mathematical library
#include <vector>
#include "fin_recipes.h" // de�ne the black scholes price

double option price european call dividends( const double& S,
const double& K,
const double& r,
const double& sigma,
const double& time to maturity,
const vector<double>& dividend times,
const vector<double>& dividend amounts ) {

double adjusted S = S;
for (int i=0;i<dividend times.size();i++) {

if (dividend times[i]<=time to maturity){
adjusted S −= dividend amounts[i] * exp(−r*dividend times[i]);

};
};
return option price call black scholes(adjusted S,K,r,sigma,time to maturity);

};

C++ Code 9.2: European option price, dividend paying stock

C++ program:

void test black scholes with dividends(){
double S = 100.0; double K = 100.0;
double r = 0.1; double sigma = 0.25;
double time=1.0;
double dividend yield=0.05;
vector<double> dividend times; vector<double> dividend amounts;
dividend times.push back(0.25); dividend amounts.push back(2.5);
dividend times.push back(0.75); dividend amounts.push back(2.5);
cout << " european stock call option with contininous dividend = "

<< option price european call payout(S,K,r,dividend yield,sigma,time) << endl;
cout << " european stock call option with discrete dividend = "

<< option price european call dividends(S,K,r,sigma,time,dividend times,dividend amounts) << endl;
};

Output from C++ program:

european stock call option with contininous dividend = 11.7344

european stock call option with discrete dividend = 11.8094
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9.2 American options.

American options are much harder to deal with than European ones. The problem is that it may be
optimal to use (exercise) the option before the �nal expiry date. This optimal exercise policy will a�ect
the value of the option, and the exercise policy needs to be known when solving the pde. There is
therefore no general analytical solutions for American call and put options. There is some special cases.
For American call options on assets that do not have any payouts, the American call price is the same
as the European one, since the optimal exercise policy is to not exercise. For American Put is this
not the case, it may pay to exercise them early. When the underlying asset has payouts, it may also
pay to exercise the option early. There is one known known analytical price for American call options,
which is the case of a call on a stock that pays a known dividend once during the life of the option,
which is discussed next. In all other cases the American price has to be approximated using one of
the techniques discussed in later chapters: Binomial approximation, numerical solution of the partial
di�erential equation, or another numerical approximation.

9.2.1 Exact american call formula when stock is paying one dividend.

When a stock pays dividend, a call option on the stock may be optimally exercised just before the stock
goes ex-dividend. While the general dividend problem is usually approximated somehow, for the special
case of one dividend payment during the life of an option an analytical solution is available, due to
Roll�Geske�Whaley.

If we let S be the stock price, K the exercise price, D1 the amount of dividend paid, t1 the time of
dividend payment, T the maturity date of option, we denote the time to dividend payment τ1 = T − t1
and the time to maturity τ = T − t.

A �rst check of early exercise is:

D1 ≤ K
(
1− e−r(T−t1)

)
If this inequality is ful�lled, early exercise is not optimal, and the value of the option is

c(S − e−r(t1−t)D1,K, r, σ, (T − t))

where c(·) is the regular Black Scholes formula.

If the inequality is not ful�lled, one performs the calculation shown in formula 9.2 and implemented in
code 9.3

Exercise 16.

The Black approximation to the price of an call option paying a �xed dividend is an approximation to the
value of the call. Suppose the dividend is paid as some date t1 before the maturity date of the option T .
Blacks approximation calculates the value of two European options using the Black Scholes formula. One
with expiry date equal to the ex dividend date of the options. Another with expiry date equal to the option
expiry, but the current price of the underlying security is adjusted down by the amount of the dividend.

1. Implement Black's approximation.
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C = (S −D1e
−r(t1−t)) (N(b1) + N(a1,−b1, ρ)) + Ke−r(T−t))N(a2,−b2, ρ)− (K −D1)e−r(t1−t)N(b2)

where

ρ = −
√

(t1 − t

T − t

a1 =
ln
(

S−D1e−q(τ1

K

)
+ (r + 1

2σ2)τ

σ
√

τ

a2 = a1 − σ
√

T − t

b1 =
ln
(

S−D1e−r(t1−t)

S̄

)
+ (r + 1

2σ2)(t1 − t)

σ
√

(t1 − t)

b2 = b1 − σ
√

T − t

and S̄ solves

c(S̄, t1) = S̄ + D1 −K

S is the price of the underlying secrutity, K the exercise price, r the risk free interest rate, D1 is the dividend amount and σ the
standard deviation of the underlying asset, t the current date, T the maturity date, T − t the time to maturity for the option and
N(·) the cumulative normal distribution. N() with one argument is the univariate normal cumulative distribution. N() with three
arguments is the bivariate normal distribution with the correlation between the two normals given as the third arguement.

Formula 9.2: Roll�Geske�Whaley price of american call option paying one �xed dividend
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#include <cmath>
#include "normdist.h" // de�ne the normal distribution functions
#include "fin_recipes.h" // the regular black sholes formula

double option price american call one dividend(const double& S,
const double& K,
const double& r,
const double& sigma,
const double& tau,
const double& D1,
const double& tau1){

if (D1 <= K* (1.0−exp(−r*(tau−tau1)))) // check for no exercise
return option price call black scholes(S−exp(−r*tau1)*D1,K,r,sigma,tau);

const double ACCURACY = 1e−6; // decrease this for more accuracy
double sigma sqr = sigma*sigma;
double tau sqrt = sqrt(tau);
double tau1 sqrt = sqrt(tau1);
double rho = − sqrt(tau1/tau);

double S bar = 0; // �rst �nd the S bar that solves c=S bar+D1-K
double S low=0; // the simplest: binomial search
double S high=S; // start by �nding a very high S above S bar
double c = option price call black scholes(S high,K,r,sigma,tau−tau1);
double test = c−S high−D1+K;
while ( (test>0.0) && (S high<=1e10) ) {

S high *= 2.0;
c = option price call black scholes(S high,K,r,sigma,tau−tau1);
test = c−S high−D1+K;

};
if (S high>1e10) { // early exercise never optimal, �nd BS value

return option price call black scholes(S−D1*exp(−r*tau1),K,r,sigma,tau);
};
S bar = 0.5 * S high; // now �nd S bar that solves c=S bar-D+K
c = option price call black scholes(S bar,K,r,sigma,tau−tau1);
test = c−S bar−D1+K;
while ( (fabs(test)>ACCURACY) && ((S high−S low)>ACCURACY) ) {

if (test<0.0) { S high = S bar; }
else { S low = S bar; };
S bar = 0.5 * (S high + S low);
c = option price call black scholes(S bar,K,r,sigma,tau−tau1);
test = c−S bar−D1+K;

};
double a1 = (log((S−D1*exp(−r*tau1))/K) +( r+0.5*sigma sqr)*tau) / (sigma*tau sqrt);
double a2 = a1 − sigma*tau sqrt;
double b1 = (log((S−D1*exp(−r*tau1))/S bar)+(r+0.5*sigma sqr)*tau1)/(sigma*tau1 sqrt);
double b2 = b1 − sigma * tau1 sqrt;
double C = (S−D1*exp(−r*tau1)) * N(b1) + (S−D1*exp(−r*tau1)) * N(a1,−b1,rho)

− (K*exp(−r*tau))*N(a2,−b2,rho) − (K−D1)*exp(−r*tau1)*N(b2);
return C;

};

C++ Code 9.3: Option price, Roll�Geske�Whaley call formula for dividend paying stock
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C++ program:

void test rgw price am call div(){
double S = 100.0; double K = 100.0;
double r = 0.1; double sigma = 0.25;
double tau = 1.0; double tau1 = 0.5;
double D1 = 10.0;
cout << " american call price with one dividend = "

<< option price american call one dividend(S,K,r,sigma,tau,D1, tau1)<< endl;
};

Output from C++ program:

american call price with one dividend = 10.0166

Example 9.1: Example of pricing of option on stock paying one dividend during the life of the option
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9.3 Options on futures

9.3.1 Black's model

For an European option written on a futures contract, we use an adjustment of the Black Scholes solution,
which was developed in Black (1976). Essentially we replace S0 with e−r(T−t)rF in the Black Scholes
formula, and get the formula shown in 9.3 and implemented in code 9.4.

c = e−r(T−t) (FN(d1)−KN(d2))

where

d1 =
ln
(

F
K

)
+ 1

2σ2(T − t)
σ
√

T − t

d2 = d1 − σ
√

T − t

F is the futures price, K is the exercise price, r the risk free interest rate, σ the volatility of the futures
price, and T − t is the time to maturity of the option (in years).

Formula 9.3: Blacks formula for the price of an European Call option with a futures contract as the
underlying security

#include <cmath> // mathematics library
#include "normdist.h" // normal distribution
using namespace std;

double futures option price call european black( const double& F, // futures price
const double& K, // exercise price
const double& r, // interest rate
const double& sigma, // volatility
const double& time){ // time to maturity

double sigma sqr = sigma*sigma;
double time sqrt = sqrt(time);
double d1 = (log (F/K) + 0.5 * sigma sqr * time) / (sigma * time sqrt);
double d2 = d1 − sigma * time sqrt;
return exp(−r*time)*(F * N(d1) − K * N(d2));

};

C++ Code 9.4: Price of European Call option on Futures contract

C++ program:

void test futures option price black(){
double F = 50.0; double K = 45.0;
double r = 0.08; double sigma = 0.2;
double time=0.5;
cout << " european futures call option = "

<< futures option price put european black(F,K,r,sigma,time) << endl;
};

Output from C++ program:

european futures call option = 0.851476

Example 9.2: Pricing of Futures option using the Black formula

Exercise 17.

The Black formula for a put option on a futures contract is

p = e−r(T−t) (KN(−d2)− FN(−d1))
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where the varibles are as de�ned for the call option.

1. Implement the put option price.
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9.4 Foreign Currency Options

Another relatively simple adjustment of the Black Scholes formula occurs when the underlying security
is a currency exchange rate (spot rate). In this case one adjusts the Black-Scholes equation for the
interest-rate di�erential.

Let S be the spot exchange rate, and now let r be the domestic interest rate and rf the foreign interest
rate. σ is then the volatility of changes in the exchange rate. The calculation of the price of an European
call option is then shown in formula 9.4 and implented in code 9.5.

c = Se−rf (T−t)N(d1)−Ke−r(T−t)N(d2)

where

d1 =
ln
(

S
K

)
+
(
r − rf + 1

2σ2
)
(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

S is the spot exchange rate and K the exercise price. r is the domestic interest rate and rf the foreign interest rate. σ is the
volatility of changes in the exchange rate. T − t is the time to maturity for the option.

Formula 9.4: European currency call

#include <cmath>
#include "normdist.h" // de�ne the normal distribution function

double currency option price call european( const double& S, // exchange rate,
const double& X, // exercise,
const double& r, // r domestic,
const double& r f, // r foreign,
const double& sigma, // volatility,
const double& time){ // time to maturity

double sigma sqr = sigma*sigma;
double time sqrt = sqrt(time);
double d1 = (log(S/X) + (r−r f+ (0.5*sigma sqr)) * time)/(sigma*time sqrt);
double d2 = d1 − sigma * time sqrt;
return S * exp(−r f*time) * N(d1) − X * exp(−r*time) * N(d2);

};

C++ Code 9.5: European Futures Call option on currency

C++ program:

void test currency option european call(){
double S = 50.0; double K = 52.0;
double r = 0.08; double rf=0.05;
double sigma = 0.2; double time=0.5;
cout << " european currency call option = "

<< currency option price call european(S,K,r,rf,sigma,time) << endl;
};

Output from C++ program:

european currency call option = 2.22556

Example 9.3: Pricing a foreign currency call option

Exercise 18.

The price for an european put for a currency option is

p = Ke−r(T−t)N(−d2)− Se−rf (T−t)N(−d1)
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1. Implement this formula.
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9.5 Perpetual puts and calls

A perpetal option is one with no maturity date, it is ini�nitely lived. Of course, only American perpetual
options make any sense, European perpetual options would probably be hard to sell.1 For both puts and
calls analytical formulas has been developed. We consider the price of an American call, and discuss the
put in an exercise. Formula 9.5 gives the analytical solution.

Cp =
K

h1 − 1

(
h1 − 1

h1

S

K

)h1

where

h1 =
1
2
− r − q

σ2
+

√(
r − q

σ2
− 1

2

)2

+
2r

σ2

S is the current price of the underlying security, K is the exercise price, r is the risk free interest rate, q is the dividend yield and
σ is the volatility of the underlying asset.

Formula 9.5: Price for a perpetual call option

#include <cmath>
using namespace std;

double option price american perpetual call(const double& S,
const double& K,
const double& r,
const double& q,
const double& sigma){

double sigma sqr=pow(sigma,2);
double h1 = 0.5− ((r−q)/sigma sqr);
h1 += sqrt(pow(((r−q)/sigma sqr−0.5),2)+2.0*r/sigma sqr);
double pric=(K/(h1−1.0))*pow(((h1−1.0)/h1)*(S/K),h1);
return pric;

};

C++ Code 9.6: Price for an american perpetual call option

C++ program:

void test option price perpetual american call(){
double S=50.0; double K=40.0;
double r=0.05; double q=0.02;
double sigma=0.05;
double price = option price american perpetual call(S,K,r,q,sigma);
cout << " perpetual call price = " << price << endl;

};

Output from C++ program:

perpetual call price = 19.4767

Example 9.4: Example of pricing of perpetual call

Exercise 19.

The price for a perpetual american put is

P p =
K

1− h2

(
h2 − 1

h2

S

K

)h2

1Such options would be like the classical April fools present, a perpetual zero coupon bond. . .
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where

h2 =
1
2
− r − q

σ2
−

√(
r − q

σ2
− 1

2

)2

+
2r

σ2

1. Implement the calculation of this formula.

9.6 Readings

Hull (2006) and McDonald (2006) are general references. A �rst formulation of an analytical call price
with dividends was in Roll (1977b). This had some errors, that were partially corrected in Geske (1979),
before Whaley (1981) gave a �nal, correct formula. See Hull (2006) for a textbook summary. Black
(1976) is the original development of the futures option. The original formulations of European foreign
currency option prices are in ? and ?. The price of a perpetual put was �rst shown in Merton (1973).
For a perpetual call see McDonald and Siegel (1986). The notation for perpetual puts and calls follows
the summary in (McDonald, 2006, pg. 393).
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Chapter 10

Option pricing with binomial approximations

10.1 Introduction

We have shown binomial calculations given an up and down movement in chapter 6. However, binomial
option pricing can also be viewed as an approximation to a continuous time distribution by judicious
choice of the constants u and d. To do so one has to ask: Is it possible to �nd a parametrization (choice
of u and d) of a binomial process
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which has the same time series properties as a (continous time) process with the same mean and volatility?
There is actually any number of ways of constructing this, hence one uses one degree of freedom on
imposing that the nodes reconnect, by imposing u = 1

d .

To value an option using this approach, we specify the number n of periods to split the time to maturity
(T − t) into, and then calculate the option using a binomial tree with that number of steps.

Given S, X, r, σ, T and the number of periods n, calculate

∆t =
T − t

n

u = eσ
√

∆t

d = e−σ
√

∆t

We also rede�ne the �risk neutral probabilities�

R = er∆t

q =
R− d

u− d

To �nd the option price, will �roll backwards:� At node t, calculate the call price as a function of the
two possible outcomes at time t + 1. For example, if there is one step,
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Cu = max(0, Su −X)

Cd = max(0, Sd −X)

�nd the call price at time 0 as

C0 = e−r(qCu + (1− q)Cd)

With more periods one will �roll backwards� as discussed in chapter 6

10.2 Pricing of options in the Black Scholes setting

Consider options on underlying securities not paying dividend.

10.2.1 European Options

For European options, binomial trees are not that much used, since the Black Scholes model will give
the correct answer, but it is useful to see the construction of the binomial tree without the checks for
early exercise, which is the American case.

The computer algorithm for a binomial in the following merits some comments. There is only one vector
of call prices, and one may think one needs two, one at time t and another at time t + 1. (Try to write
down the way you would solve it before looking at the algorithm below.) But by using the fact that the
branches reconnect, it is possible to get away with the algorithm below, using one less array. You may
want to check how this works. It is also a useful way to make sure one understands binomial option
pricing.

10.2.2 American Options

An American option di�ers from an European option by the exercise possibility. An American option
can be exercised at any time up to the maturity date, unlike the European option, which can only be
exercised at maturity. In general, there is unfortunately no analytical solution to the American option
problem, but in some cases it can be found. For example, for an American call option on non-dividend
paying stock, the American price is the same as the European call.

It is in the case of American options, allowing for the possibility of early exercise, that binomial approx-
imations are useful. At each node we calculate the value of the option as a function of the next periods
prices, and then check for the value exercising of exercising the option now

Code 10.2 illustrates the calculation of the price of an American call. Actually, for this particular case,
the american price will equal the european.
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#include <cmath> // standard mathematical library
#include <algorithm> // de�ning the max() operator
#include <vector> // STL vector templates
using namespace std;

double option price call european binomial( const double& S, // spot price
const double& X, // exercice price
const double& r, // interest rate
const double& sigma, // volatility
const double& t, // time to maturity
const int& steps){ // no steps in binomial tree

double R = exp(r*(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(t/steps)); // up movement
double uu = u*u;
double d = 1.0/u;
double p up = (R−d)/(u−d);
double p down = 1.0−p up;
vector<double> prices(steps+1); // price of underlying
prices[0] = S*pow(d, steps); // �ll in the endnodes.
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i−1];
vector<double> call values(steps+1); // value of corresponding call
for (int i=0; i<=steps; ++i) call values[i] = max(0.0, (prices[i]−X)); // call payo�s at maturity
for (int step=steps−1; step>=0; −−step) {

for (int i=0; i<=step; ++i) {
call values[i] = (p up*call values[i+1]+p down*call values[i])*Rinv;

};
};
return call values[0];

};

C++ Code 10.1: Option price for binomial european
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#include <cmath> // standard mathematical library
#include <algorithm> // de�nes the max() operator
#include <vector> // STL vector templates
using namespace std;

double option price call american binomial( const double& S, // spot price
const double& X, // exercice price
const double& r, // interest rate
const double& sigma, // volatility
const double& t, // time to maturity
const int& steps) { // no steps in binomial tree

double R = exp(r*(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(t/steps)); // up movement
double d = 1.0/u;
double p up = (R−d)/(u−d);
double p down = 1.0−p up;

vector<double> prices(steps+1); // price of underlying
prices[0] = S*pow(d, steps); // �ll in the endnodes.
double uu = u*u;
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i−1];

vector<double> call values(steps+1); // value of corresponding call
for (int i=0; i<=steps; ++i) call values[i] = max(0.0, (prices[i]−X)); // call payo�s at maturity

for (int step=steps−1; step>=0; −−step) {
for (int i=0; i<=step; ++i) {

call values[i] = (p up*call values[i+1]+p down*call values[i])*Rinv;
prices[i] = d*prices[i+1];
call values[i] = max(call values[i],prices[i]−X); // check for exercise

};
};
return call values[0];

};

C++ Code 10.2: Binomial option price american opstion

C++ program:

void test binomial approximations option pricing(){
double S = 100.0; double K = 100.0;
double r = 0.1; double sigma = 0.25;
double time=1.0;
int no steps = 100;
cout << " european call = "

<< option price call european binomial(S,K,r,sigma,time,no steps)
<< endl;

cout << " american call = "

<< option price call american binomial(S,K,r,sigma,time,no steps)
<< endl;

};

Output from C++ program:

european call = 14.9505

american call = 14.9505

Example 10.1: Option pricing using binomial approximations
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10.2.3 Estimating partials.

It is always necessary to calculate the partial derivatives as well as the option price.

The binomial methods gives us ways to approximate these as well. How to �nd them in the binomial
case are described in Hull (2006). The code below is for the non�dividend case.

Delta , the derivative of the option price with respect to the underlying.

#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

double option price delta american call binomial(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& t,
const int& no steps){ // steps in binomial

double R = exp(r*(t/no steps));
double Rinv = 1.0/R;
double u = exp(sigma*sqrt(t/no steps));
double d = 1.0/u;
double uu= u*u;
double pUp = (R−d)/(u−d);
double pDown = 1.0 − pUp;

vector<double> prices (no steps+1);
prices[0] = S*pow(d, no steps);
for (int i=1; i<=no steps; ++i) prices[i] = uu*prices[i−1];

vector<double> call values (no steps+1);
for (int i=0; i<=no steps; ++i) call values[i] = max(0.0, (prices[i]−X));

for (int CurrStep=no steps−1 ; CurrStep>=1; −−CurrStep) {
for (int i=0; i<=CurrStep; ++i) {

prices[i] = d*prices[i+1];
call values[i] = (pDown*call values[i]+pUp*call values[i+1])*Rinv;
call values[i] = max(call values[i], prices[i]−X); // check for exercise

};
};
double delta = (call values[1]−call values[0])/(S*u−S*d);
return delta;

};

C++ Code 10.3: Delta

Other hedge parameters.
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#include <cmath>
#include <algorithm>
#include "fin_recipes.h"

void option price partials american call binomial(const double& S, // spot price
const double& X, // Exercise price,
const double& r, // interest rate
const double& sigma, // volatility
const double& time, // time to maturity
const int& no steps, // steps in binomial
double& delta, // partial wrt S
double& gamma, // second prt wrt S
double& theta, // partial wrt time
double& vega, // partial wrt sigma
double& rho){ // partial wrt r

vector<double> prices(no steps+1);
vector<double> call values(no steps+1);
double delta t =(time/no steps);
double R = exp(r*delta t);
double Rinv = 1.0/R;
double u = exp(sigma*sqrt(delta t));
double d = 1.0/u;
double uu= u*u;
double pUp = (R−d)/(u−d);
double pDown = 1.0 − pUp;
prices[0] = S*pow(d, no steps);
for (int i=1; i<=no steps; ++i) prices[i] = uu*prices[i−1];
for (int i=0; i<=no steps; ++i) call values[i] = max(0.0, (prices[i]−X));
for (int CurrStep=no steps−1; CurrStep>=2; −−CurrStep) {

for (int i=0; i<=CurrStep; ++i) {
prices[i] = d*prices[i+1];
call values[i] = (pDown*call values[i]+pUp*call values[i+1])*Rinv;
call values[i] = max(call values[i], prices[i]−X); // check for exercise

};
};
double f22 = call values[2];
double f21 = call values[1];
double f20 = call values[0];
for (int i=0;i<=1;i++) {

prices[i] = d*prices[i+1];
call values[i] = (pDown*call values[i]+pUp*call values[i+1])*Rinv;
call values[i] = max(call values[i], prices[i]−X); // check for exercise

};
double f11 = call values[1];
double f10 = call values[0];
prices[0] = d*prices[1];
call values[0] = (pDown*call values[0]+pUp*call values[1])*Rinv;
call values[0] = max(call values[0], S−X); // check for exercise on �rst date
double f00 = call values[0];
delta = (f11−f10)/(S*u−S*d);
double h = 0.5 * S * ( uu − d*d);
gamma = ( (f22−f21)/(S*(uu−1)) − (f21−f20)/(S*(1−d*d)) ) / h;
theta = (f21−f00) / (2*delta t);
double di� = 0.02;
double tmp sigma = sigma+di�;
double tmp prices = option price call american binomial(S,X,r,tmp sigma,time,no steps);
vega = (tmp prices−f00)/di�;
di� = 0.05;
double tmp r = r+di�;
tmp prices = option price call american binomial(S,X,tmp r,sigma,time,no steps);
rho = (tmp prices−f00)/di�;

};

C++ Code 10.4: Hedge parameters
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C++ program:

void test binomial approximations option price partials(){
double S = 100.0; double K = 100.0;
double r = 0.1; double sigma = 0.25;
double time=1.0; int no steps = 100;

double delta, gamma, theta, vega, rho;
option price partials american call binomial(S,K,r, sigma, time, no steps,

delta, gamma, theta, vega, rho);
cout << " Call price partials " << endl;
cout << " delta = " << delta << endl;
cout << " gamma = " << gamma << endl;
cout << " theta = " << theta << endl;
cout << " vega = " << vega << endl;
cout << " rho = " << rho << endl;

};

Output from C++ program:

Call price partials

delta = 0.699792

gamma = 0.0140407

theta = -9.89067

vega = 34.8536

rho = 56.9652

Example 10.2: Option price partials using binomial approximations
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10.3 Adjusting for payouts for the underlying

The simplest case of a payout is the similar one to the one we saw in the Black Scholes case, a continous
payout of y.

#include <cmath> // standard mathematical library
#include <algorithm> // de�nes the max() operator
#include <vector> // STL vector templates
using namespace std;

double option price call american binomial( const double& S, // spot price
const double& X, // exercice price
const double& r, // interest rate
const double& y, // continous payout
const double& sigma, // volatility
const double& t, // time to maturity
const int& steps) { // no steps in binomial tree

double R = exp(r*(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(t/steps)); // up movement
double uu = u*u;
double d = 1.0/u;
double p up = (exp((r−y)*(t/steps))−d)/(u−d);
double p down = 1.0−p up;
vector<double> prices(steps+1); // price of underlying
prices[0] = S*pow(d, steps);
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i−1]; // �ll in the endnodes.

vector<double> call values(steps+1); // value of corresponding call
for (int i=0; i<=steps; ++i) call values[i] = max(0.0, (prices[i]−X)); // call payo�s at maturity

for (int step=steps−1; step>=0; −−step) {
for (int i=0; i<=step; ++i) {

call values[i] = (p up*call values[i+1]+p down*call values[i])*Rinv;
prices[i] = d*prices[i+1];
call values[i] = max(call values[i],prices[i]−X); // check for exercise

};
};
return call values[0];

};

C++ Code 10.5: Binomial option price with continous payout
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10.4 Pricing options on stocks paying dividends using a binomial approxi-

mation

10.4.1 Checking for early exercise in the binomial model.

If the underlying asset is a stock paying dividends during the maturity of the option, the terms of the
option is not adjusted to re�ect this cash payment, which means that the option value will re�ect the
dividend payments.

In the binomial model, the adjustment for dividends depend on whether the dividends are discrete or
proportional.

10.4.2 Proportional dividends.

For proportional dividends, we simply multiply with an adjustment factor the stock prices at the ex�
dividend date, the nodes in the binomial tree will �link up� again, and we can use the same �rolling back�
procedure.

10.4.3 Discrete dividends

The problem is when the dividends are constant dollar amounts.

In that case the nodes of the binomial tree do not �link up,� and the number of branches increases
dramatically, which means that the time to do the calculation is increased.

The algorithm presented here implements this case, with no linkup, by constructing a binomial tree up
to the ex-dividend date, and then, at the terminal nodes of that tree, call itself with one less dividend
payment, and time to maturity the time remaining at the ex-dividend date. Doing that calculates the
value of the option at the ex-dividend date, which is then compared to the value of exercising just before
the ex-dividend date. It is a cute example of using recursion in simplifying calculations, but as with
most recursive solutions, it has a cost in computing time. For large binomial trees and several dividends
this procedure will take a long time.
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#include <cmath>
#include <algorithm>
#include <vector>
#include "fin_recipes.h"

#include <iostream>

double option price call american proportional dividends binomial(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
const int& no steps,
const vector<double>& dividend times,
const vector<double>& dividend yields) {

// note that the last dividend date should be before the expiry date
int no dividends=dividend times.size();
if (no dividends == 0) {

return option price call american binomial(S,X,r,sigma,time,no steps); // price w/o dividends
};
double delta t = time/no steps;
double R = exp(r*delta t);
double Rinv = 1.0/R;
double u = exp(sigma*sqrt(delta t));
double uu= u*u;
double d = 1.0/u;
double pUp = (R−d)/(u−d);
double pDown = 1.0 − pUp;
vector<int> dividend steps(no dividends); // when dividends are paid
for (int i=0; i<no dividends; ++i) {

dividend steps[i] = (int)(dividend times[i]/time*no steps);
};
vector<double> prices(no steps+1);
vector<double> call prices(no steps+1);
prices[0] = S*pow(d, no steps); // adjust downward terminal prices by dividends
for (int i=0; i<no dividends; ++i) { prices[0]*=(1.0−dividend yields[i]); };
for (int i=1; i<=no steps; ++i) { prices[i] = uu*prices[i−1]; };
for (int i=0; i<=no steps; ++i) call prices[i] = max(0.0, (prices[i]−X));

for (int step=no steps−1; step>=0; −−step) {
for (int i=0;i<no dividends;++i) { // check whether dividend paid

if (step==dividend steps[i]) {
cout << "step " << step << endl;
for (int j=0;j<=(step+1);++j) {

prices[j]*=(1.0/(1.0−dividend yields[i]));
};

};
};
for (int i=0; i<=step; ++i) {

call prices[i] = (pDown*call prices[i]+pUp*call prices[i+1])*Rinv;
prices[i] = d*prices[i+1];
call prices[i] = max(call prices[i], prices[i]−X); // check for exercise

};
};
return call prices[0];

};

C++ Code 10.6: Binomial option price of stock option where stock pays proportional dividends
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#include <cmath>
#include <vector>
#include "fin_recipes.h"

#include <iostream>
double option price call american discrete dividends binomial(const double& S,

const double& K,
const double& r,
const double& sigma,
const double& t,
const int& steps,
const vector<double>& dividend times,
const vector<double>& dividend amounts) {

int no dividends = dividend times.size();
if (no dividends==0) return option price call american binomial(S,K,r,sigma,t,steps);// just do regular
int steps before dividend = (int)(dividend times[0]/t*steps);
const double R = exp(r*(t/steps));
const double Rinv = 1.0/R;
const double u = exp(sigma*sqrt(t/steps));
const double d = 1.0/u;
const double pUp = (R−d)/(u−d);
const double pDown = 1.0 − pUp;
double dividend amount = dividend amounts[0];
vector<double> tmp dividend times(no dividends−1); // temporaries with
vector<double> tmp dividend amounts(no dividends−1); // one less dividend
for (int i=0;i<(no dividends−1);++i){

tmp dividend amounts[i] = dividend amounts[i+1];
tmp dividend times[i] = dividend times[i+1] − dividend times[0];

};
vector<double> prices(steps before dividend+1);
vector<double> call values(steps before dividend+1);
prices[0] = S*pow(d, steps before dividend);
for (int i=1; i<=steps before dividend; ++i) prices[i] = u*u*prices[i−1];
for (int i=0; i<=steps before dividend; ++i){

double value alive
= option price call american discrete dividends binomial(prices[i]−dividend amount,K, r, sigma,

t−dividend times[0],// time after �rst dividend
steps−steps before dividend,
tmp dividend times,
tmp dividend amounts);

call values[i] = max(value alive,(prices[i]−K)); // compare to exercising now
};
for (int step=steps before dividend−1; step>=0; −−step) {

for (int i=0; i<=step; ++i) {
prices[i] = d*prices[i+1];
call values[i] = (pDown*call values[i]+pUp*call values[i+1])*Rinv;
call values[i] = max(call values[i], prices[i]−K);

};
};
return call values[0];

};

C++ Code 10.7: Binomial option price of stock option where stock pays discrete dividends
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C++ program:

void test binomial approximations option price dividends(){
double S = 100.0; double K = 100.0;
double r = 0.10; double sigma = 0.25;
double time=1.0;
int no steps = 100;
double d=0.02;
cout << " call price with continuous dividend payout = "

<< option price call american binomial(S,K,r,d,sigma,time,no steps) << endl;
vector<double> dividend times; vector<double> dividend yields;
dividend times.push back(0.25); dividend yields.push back(0.025);
dividend times.push back(0.75); dividend yields.push back(0.025);
cout << " call price with proportial dividend yields at discrete dates = "

<< option price call american proportional dividends binomial(S,K,r,sigma,time,no steps,
dividend times, dividend yields)

<< endl;

vector<double> dividend amounts;
dividend amounts.push back(2.5);
dividend amounts.push back(2.5);
cout << " call price with proportial dividend amounts at discrete dates = "

<< option price call american discrete dividends binomial(S,K,r,sigma,time,no steps,
dividend times, dividend amounts)

<< endl;
};

Output from C++ program:

call price with continuous dividend payout = 13.5926

step 75

step 25

call price with proportial dividend yields at discrete dates = 11.8604

call price with proportial dividend amounts at discrete dates = 12.0233

Example 10.3: Binomial pricing with dividends
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10.5 Option on futures

For American options, because of the feasibility of early exercise, the binomial model is used to approx-
imate the option value.

#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

double futures option price call american binomial(const double& F, // price futures contract
const double& X, // exercise price
const double& r, // interest rate
const double& sigma, // volatility
const double& time, // time to maturity
const int& no steps) { // number of steps

vector<double> futures prices(no steps+1);
vector<double> call values (no steps+1);
double t delta= time/no steps;
double Rinv = exp(−r*(t delta));
double u = exp(sigma*sqrt(t delta));
double d = 1.0/u;
double uu= u*u;
double pUp = (1−d)/(u−d); // note how probability is calculated
double pDown = 1.0 − pUp;
futures prices[0] = F*pow(d, no steps);
int i;
for (i=1; i<=no steps; ++i) futures prices[i] = uu*futures prices[i−1]; // terminal tree nodes
for (i=0; i<=no steps; ++i) call values[i] = max(0.0, (futures prices[i]−X));
for (int step=no steps−1; step>=0; −−step) {

for (i=0; i<=step; ++i) {
futures prices[i] = d*futures prices[i+1];
call values[i] = (pDown*call values[i]+pUp*call values[i+1])*Rinv;
call values[i] = max(call values[i], futures prices[i]−X); // check for exercise

};
};
return call values[0];

};

C++ Code 10.8: Option on futures

C++ program:

void test binomial approximations futures options(){
double F = 50.0; double K = 45.0;
double r = 0.08; double sigma = 0.2;
double time=0.5;
int no steps=100;
cout << " european futures call option = "

<< futures option price call american binomial(F,K,r,sigma,time,no steps) << endl;
};

Output from C++ program:

european futures call option = 5.74254

Example 10.4: Futures option price
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10.6 Foreign Currency options

For American options, the usual method is approximation using binomial trees, checking for early exercise
due to the interest rate di�erential.

#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

double currency option price call american binomial(const double& S,
const double& K,
const double& r,
const double& r f,
const double& sigma,
const double& time,
const int& no steps) {

vector<double> exchange rates(no steps+1);
vector<double> call values(no steps+1);
double t delta= time/no steps;
double Rinv = exp(−r*(t delta));
double u = exp(sigma*sqrt(t delta));
double d = 1.0/u;
double uu= u*u;
double pUp = (exp((r−r f)*t delta)−d)/(u−d); // adjust for foreign int.rate
double pDown = 1.0 − pUp;
exchange rates[0] = S*pow(d, no steps);
int i;
for (i=1; i<=no steps; ++i) {

exchange rates[i] = uu*exchange rates[i−1]; // terminal tree nodes
}
for (i=0; i<=no steps; ++i) call values[i] = max(0.0, (exchange rates[i]−K));
for (int step=no steps−1; step>=0; −−step) {

for (i=0; i<=step; ++i) {
exchange rates[i] = d*exchange rates[i+1];
call values[i] = (pDown*call values[i]+pUp*call values[i+1])*Rinv;
call values[i] = max(call values[i], exchange rates[i]−K); // check for exercise

};
};
return call values[0];

};

C++ Code 10.9: Binomial Currency Option

C++ program:

void test binomial approximations currency options(){
double S = 50.0; double K = 52.0;
double r = 0.08; double rf=0.05;
double sigma = 0.2; double time=0.5;

int no steps = 100;
cout << " european currency option call = "

<< currency option price call american binomial(S,K,r,rf,sigma,time,no steps) << endl;
};

Output from C++ program:

european currency option call = 2.23129

Example 10.5: Currency option price
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10.7 References

The original source for binomial option pricing was the paper by Cox et al. (1979). Good textbook
discussions are in Cox and Rubinstein (1985), Bossaerts and Ødegaard (2001) and Hull (2006).

Exercise 20.

Consider an European call option on non-dividend paying stock, where S = 100, K = 100, σ = 0.2,
(T − t) = 1 and r = 0.1.

1. Calculate the price of this option using Black Scholes

2. Calculate the price using a binomial approximation, using 10, 100 and 1000 steps in the approximation.

3. Discuss what are sources of di�erences in the estimated prices.
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Chapter 11

Finite Di�erences

11.1 Explicit Finite di�erences

The method of choice for any engineer given a di�erential equation to solve is to numerically approximate
it using a �nite di�erence scheme, which is to approximate the continous di�erential equation with a
discrete di�erence equation, and solve this di�erence equation.

11.2 European Options.

For European options we do not need to use the �nite di�erence scheme, but we show how one would
�nd the european price for comparison purposes. We show the case of an explicit �nite di�erence scheme
in code 11.1. A problem with the explicit version is that it may not converge for certain combinations
of inputs.
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#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

double option price put european �nite di� explicit(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
const int& no S steps,
const int& no t steps) {

double sigma sqr = sigma*sigma;
unsigned int M; // need M = no S steps to be even:
if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0*S/M;
vector<double> S values(M+1);
for (unsigned m=0;m<=M;m++) { S values[m] = m*delta S; };
int N=no t steps;
double delta t = time/N;

vector<double> a(M);
vector<double> b(M);
vector<double> c(M);
double r1=1.0/(1.0+r*delta t);
double r2=delta t/(1.0+r*delta t);
for (unsigned int j=1;j<M;j++){

a[j] = r2*0.5*j*(−r+sigma sqr*j);
b[j] = r1*(1.0−sigma sqr*j*j*delta t);
c[j] = r2*0.5*j*(r+sigma sqr*j);

};
vector<double> f next(M+1);
for (unsigned m=0;m<=M;++m) { f next[m]=max(0.0,X−S values[m]); };
double f[M+1];
for (int t=N−1;t>=0;−−t) {

f[0]=X;
for (unsigned m=1;m<M;++m) {

f[m]=a[m]*f next[m−1]+b[m]*f next[m]+c[m]*f next[m+1];
};
f[M] = 0;
for (unsigned m=0;m<=M;++m) { f next[m] = f[m]; };

};
return f[M/2];

};

C++ Code 11.1: Explicit �nite di�erences calculation of european put option
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11.3 American Options.

We now compare the American versions of the same algoritms, the only di�erence being the check for
exercise at each point. Code 11.2 shows the code for an american put option.

#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

double option price put american �nite di� explicit( const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
const int& no S steps,
const int& no t steps) {

double sigma sqr = sigma*sigma;

int M; // need M = no S steps to be even:
if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0*S/M;
vector<double> S values(M+1);
for (int m=0;m<=M;m++) { S values[m] = m*delta S; };
int N=no t steps;
double delta t = time/N;

vector<double> a(M);
vector<double> b(M);
vector<double> c(M);
double r1=1.0/(1.0+r*delta t);
double r2=delta t/(1.0+r*delta t);
for (int j=1;j<M;j++){

a[j] = r2*0.5*j*(−r+sigma sqr*j);
b[j] = r1*(1.0−sigma sqr*j*j*delta t);
c[j] = r2*0.5*j*(r+sigma sqr*j);

};
vector<double> f next(M+1);
for (int m=0;m<=M;++m) { f next[m]=max(0.0,X−S values[m]); };
vector<double> f(M+1);
for (int t=N−1;t>=0;−−t) {

f[0]=X;
for (int m=1;m<M;++m) {

f[m]=a[m]*f next[m−1]+b[m]*f next[m]+c[m]*f next[m+1];
f[m] = max(f[m],X−S values[m]); // check for exercise

};
f[M] = 0;
for (int m=0;m<=M;++m) { f next[m] = f[m]; };

};
return f[M/2];

};

C++ Code 11.2: Explicit �nite di�erences calculation of american put option

Readings Brennan and Schwartz (1978) is one of the �rst �nance applications of �nite di�erences.
Section 14.7 of Hull (1993) has a short introduction to �nite di�erences. Wilmott, Dewynne, and Howison
(1994) is an exhaustive source on option pricing from the perspective of solving partial di�erential
equations.
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C++ program:

void test explicit �nite di�erences(){
double S = 50.0;
double K = 50.0;
double r = 0.1;
double sigma = 0.4;
double time=0.4167;
int no S steps=20;
int no t steps=11;
cout << " explicit finite differences, european put price = ";
cout << option price put european �nite di� explicit(S,K,r,sigma,time,no S steps,no t steps)

<< endl;
cout << " explicit finite differences, american put price = ";
cout << option price put american �nite di� explicit(S,K,r,sigma,time,no S steps,no t steps)

<< endl;
};

Output from C++ program:

explicit finite differences, european put price = 4.03667

explicit finite differences, american put price = 4.25085

Example 11.1: Explicit �nite di�erences
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Chapter 12

Option pricing by simulation

We now consider using Monte Carlo methods to estimate the price of an European option, and let us
�rst consider the case of the �usual� European Call, which is priced by the Black Scholes equation. Since
there is already a closed form solution for this case, it is not really necessary to use simulations, but we
use the case of the standard call for illustrative purposes.

At maturity, a call option is worth

cT = max(0, ST −X)

At an earlier date t, the option value will be the expected present value of this.

ct = E[PV (max(0, ST −X)]

Now, an important simplifying feature of option pricing is the �risk neutral result,� which implies that
we can treat the (suitably transformed) problem as the decision of a risk neutral decision maker, if we
also modify the expected return of the underlying asset such that this earns the risk free rate.

ct = e−r(T−t)E∗[max(0, ST −X)],

where E∗[·] is a transformation of the original expectation. One way to estimate the value of the call is
to simulate a large number of sample values of ST according to the assumed price process, and �nd the
estimated call price as the average of the simulated values. By appealing to a law of large numbers, this
average will converge to the actual call value, where the rate of convergence will depend on how many
simulations we perform.

12.1 Simulating lognormally distributed random variables

Lognormal variables are simulated as follows. Let x̃ be normally distributed with mean zero and variance
one. If St follows a lognormal distribution, then the one-period-later price St+1 is simulated as

St+1 = Ste
(r− 1

2 σ2)+σx̃,

or more generally, if the current time is t and terminal date is T , with a time between t and T of (T − t),

ST = Ste
(r− 1

2 σ2)(T−t)+σ
√

T−tx̃

Simulation of lognormal random variables is illustrated by code 12.1.

12.2 Pricing of European Call options

For the purposes of doing the Monte Carlo estimation of the price if an European call

ct = e−r(T−t)E[max(0, ST −X)],

note that here one merely need to simulate the terminal price of the underlying, ST , the price of the
underlying at any time between t and T is not relevant for pricing. We proceed by simulating lognormally
distributed random variables, which gives us a set of observations of the terminal price ST . If we let
ST,1, ST,2, ST,3, . . . ST,n denote the n simulated values, we will estimate E∗[max(0, ST−X)] as the average
of option payo�s at maturity, discounted at the risk free rate.

ĉt = e−r(T−t)

(
n∑

i=1

max (0, ST,i −X)

)
Code 12.2 shows the implementation of a Monte Carlo estimation of an European call option.
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#include <cmath>
using namespace std;
#include "normdist.h"

double simulate lognormal random variable(const double& S, // current value of variable
const double& r, // interest rate
const double& sigma, // volatitily
const double& time) { // time to �nal date

double R = (r − 0.5 * pow(sigma,2) )*time;
double SD = sigma * sqrt(time);
return S * exp(R + SD * random normal());

};

C++ Code 12.1: Simulating a lognormally distributed random variable

#include <cmath> // standard mathematical functions
#include <algorithm> // de�ne the max() function
using namespace std;
#include "normdist.h" // de�nition of random number generator

double

option price call european simulated( const double& S, // price of underlying
const double& X, // exercise price
const double& r, // risk free interest rate
const double& sigma, // volatility of underlying
const double& time, // time to maturity (in years)
const int& no sims){ // number of simulations

double R = (r − 0.5 * pow(sigma,2))*time;
double SD = sigma * sqrt(time);
double sum payo�s = 0.0;
for (int n=1; n<=no sims; n++) {

double S T = S* exp(R + SD * random normal());
sum payo�s += max(0.0, S T−X);

};
return exp(−r*time) * (sum payo�s/double(no sims));

};

C++ Code 12.2: European Call option priced by simulation

12.3 Hedge parameters

It is of course, just as in the standard case, desirable to estimate hedge parameters as well as option
prices. We will show how one can �nd an estimate of the option delta, the �rst derivative of the call

C++ program:

void test simulation pricing() {
double S=100.0; double K=100.0; double r=0.1; double sigma=0.25;
double time=1.0; int no sims=5000;
cout << " call: black scholes price = " << option price call black scholes(S,K,r,sigma,time) << endl;
cout << " simulated price = "

<< option price call european simulated(S,K,r,sigma,time,no sims) << endl;
cout << " put: black scholes price = " << option price put black scholes(S,K,r,sigma,time) << endl;
cout << " simulated price = "

<< option price put european simulated(S,K,r,sigma,time, no sims) << endl;
};

Output from C++ program:

call: black scholes price = 14.9758

simulated price = 14.8404

put: black scholes price = 5.45954

simulated price = 5.74588
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price with respect to the underlying security: ∆ = ∂ct

∂S . To understand how one goes about estimating
this, let us recall that the �rst derivative of a function f is de�ned as the limit

f ′(x) = lim
h→0

f(x + h)− f(x)
h

Thinking of f(S) as the option price formula ct = f (S;X, r, σ, (T − t)), we see that we can evaluate the
option price at two di�erent values of the underlying, S and S + q, where q is a small quantity, and
estimate the option delta as

∆̂ =
f(S + q)− f(S)

q

In the case of Monte Carlo estimation, it is very important that this is done by using the same sequence of
random variables to estimate the two option prices with prices of the underlying S and S + q. Code 12.3
implements this estimation of the option delta. One can estimate other hedge parameters in a simular

#include <cmath> // standard mathematical functions
#include <algorithm> // de�ne the max() function
using namespace std;
#include "normdist.h" // de�nition of random number generator

double option price delta call european simulated(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
const int& no sims){

double R = (r − 0.5 * pow(sigma,2))*time;
double SD = sigma * sqrt(time);
double sum payo�s = 0.0;
double sum payo�s q = 0.0;
double q = S*0.01;
for (int n=1; n<=no sims; n++) {

double Z = random normal();
double S T = S* exp(R + SD * Z);
sum payo�s += max(0.0, S T−X);
double S T q = (S+q)* exp(R + SD * Z);
sum payo�s q += max(0.0, S T q−X);

};
double c = exp(−r*time) * ( sum payo�s/no sims);
double c q = exp(−r*time) * ( sum payo�s q/no sims);
return (c q−c)/q;

};

C++ Code 12.3: Estimate Delta of European Call option priced by Monte Carlo

way.
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C++ program:

void test simulation pricing delta(){
double S=100.0; double K=100.0; double r=0.1; double sigma=0.25;
double time=1.0; int no sims=5000;
cout << " call: bs delta = " << option price delta call black scholes(S,K,r,sigma,time)

<< " sim delta = " << option price delta call european simulated(S,K,r,sigma,time,no sims)
<< endl;

cout << " put: bs delta = " << option price delta put black scholes(S,K,r,sigma,time)
<< " sim delta = " << option price delta put european simulated(S,K,r,sigma,time,no sims)
<< endl;

};

Output from C++ program:

call: bs delta = 0.700208 sim delta = 0.701484

put: bs delta = -0.299792 sim delta = -0.307211
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12.4 More general payo�s. Function prototypes

The above shows the case for a call option. If we want to price other types of options, with di�erent
payo�s we could write similar routines for every possible case. But this would be wasteful, instead a bit
of thought allows us to write option valuations for any kind of option whose payo� depend on the value
of the underlying at maturity, only. Let us now move toward a generic routine for pricing derivatives
with Monte Carlo. This relies on the ability of C++ to write subroutines which one call with function

prototypes, i.e. that in the call to to the subroutine/function one provides a function instead of a variable.
Consider pricing of standard European put and call options. At maturity each option only depend on
the value of the underlying ST and the exercise price X through the relations

CT = max(ST −X, 0)

PT = max(X − ST , 0)

Code 12.4 shows two C++ functions which calculates this.

#include <algorithm>
using namespace std;

double payo� call(const double& price, const double& X){
return max(0.0,price−X);

};

double payo� put (const double& price, const double& X) {
return max(0.0,X−price);

};

C++ Code 12.4: Payo� call and put options

The interesting part comes when one realises one can write a generic simulation routine to which one
provide one of these functions, or some other function describing a payo� which only depends on the
price of the underlying and some constant. Code 12.5 shows how this is done.

#include <cmath>
using namespace std;
#include "fin_recipes.h"

double

derivative price simulate european option generic(const double& S, // price of underlying
const double& X, // used by user provided payo� function
const double& r, // risk free interest rate
const double& sigma, // volatility
const double& time, // time to maturity
double payo�(const double& price, const double& X),
// user provided function
const int& no sims) { // number of simulations to run

double sum payo�s=0;
for (int n=0; n<no sims; n++) {

double S T = simulate lognormal random variable(S,r,sigma,time);
sum payo�s += payo�(S T,X);

};
return exp(−r*time) * (sum payo�s/no sims);

};

C++ Code 12.5: Generic simulation pricing

Note the presence of the line

double payoff(const double& price, const double& X),
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in the subroutine call. When this function is called, the calling program will need to provide a function
to put there, such as the Black Scholes example above. The next example shows a complete example of
how this is done.

C++ program:

void test simulation bs case using generic routine(){
double S = 100; double X = 100; double r = 0.1;
double sigma = 0.25; double time = 1.0; int no sims = 50000;
cout << "Black Scholes call option price = " << option price call black scholes(S,X,r,sigma,time) << endl;
cout << "Simulated call option price = "

<< derivative price simulate european option generic(S,X,r,sigma,time,payo� call,no sims)
<< endl;

cout << "Black Scholes put option price = " << option price put black scholes(S,X,r,sigma,time) << endl;
cout << "Simulated put option price = "

<< derivative price simulate european option generic(S,X,r,sigma,time,payo� put,no sims)
<< endl;

};

Output from C++ program:

Black Scholes call option price = 14.9758

Simulated call option price = 14.995

Black Scholes put option price = 5.45954

Simulated put option price = 5.5599

As we see, even with as many as 50,000 simuations, the option prices estimated using Monte Carlo still
di�ers substantially from the �true� values.

12.5 Improving the e�ciency in simulation

There are a number of ways of �improving� the implementation of Monte Carlo estimation such that the
estimate is closer to the true value.

12.5.1 Control variates.

One is the method of control variates. The idea is simple. When one generates the set of terminal values
of the underlying security, one can value several derivatives using the same set of terminal values. What
if one of the derivatives we value using the terminal values is one which we have an analytical solution
to? For example, suppose we calculate the value of an at the money European call option using both
the (analytical) Black Scholes formula and Monte Carlo simulation. If it turns out that the Monte Carlo
estimate overvalues the option price, we think that this will also be the case for other derivatives valued
using the same set of simulated terminal values. We therefore move the estimate of the price of the
derivative of interest downwards.

Thus, suppose we want to value an European put and we use the price of an at the money European call
as the control variate. Using the same set of simulated terminal values ST,i, we estimate the two options
using Monte Carlo as:

p̂t = e−r(T−t)

(
n∑

i=1

max (0, X − ST,i)

)

ĉt = e−r(T−t)

(
n∑

i=1

max (0, ST,i −X)

)

We calculate the Black Scholes value of the call ĉbs
t , and calculate pcv

t , the estimate of the put price with
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a control variate adjustment, as follows

p̂cv
t = p̂t + (cbs

t − ĉt)

One can use other derivatives than the at-the-money call as the control variate, the only limitation being
that it has a tractable analytical solution.

Code 12.6 shows the implementation of a Monte Carlo estimation using an at-the-money European call
as the control variate.

#include <cmath>
using namespace std;
#include "fin_recipes.h"

double

derivative price simulate european option generic with control variate(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
double payo�(const double& S,

const double& X),
const int& no sims) {

double c bs = option price call black scholes(S,S,r,sigma,time);// price an at the money Black Scholes call
double sum payo�s=0;
double sum payo�s bs=0;
for (int n=0; n<no sims; n++) {

double S T= simulate lognormal random variable(S,r,sigma,time);
sum payo�s += payo�(S T,X);
sum payo�s bs += payo� call(S T,S); // simulate at the money Black Scholes price

};
double c sim = exp(−r*time) * (sum payo�s/no sims);
double c bs sim = exp(−r*time) * (sum payo�s bs/no sims);
c sim += (c bs−c bs sim);
return c sim;

};

C++ Code 12.6: Generic with control variate

12.5.2 Antithetic variates.

An alternative to using control variates is to consider the method of antithetic variates. The idea behind
this is that Monte Carlo works best if the simulated variables are �spread� out as closely as possible
to the true distribution. Here we are simulating unit normal random variables. One property of the
normal is that it is symmetric around zero, and the median value is zero. Why don't we enforce this
in the simulated terminal values? An easy way to do this is to �rst simulate a unit random normal
variable Z, and then use both Z and −Z to generate the lognormal random variables. Code 12.7 shows
the implementation of this idea. Boyle (1977) shows that the e�ciency gain with antithetic variates is
not particularly large. There are other ways of ensuring that the simulated values really span the whole
sample space, sometimes called �pseudo Monte Carlo.�
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#include "fin_recipes.h"

#include "normdist.h"

#include <cmath>
using namespace std;

double

derivative price simulate european option generic with antithetic variate(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
double payo�(const double& S,

const double& X),
const int& no sims) {

double R = (r − 0.5 * pow(sigma,2) )*time;
double SD = sigma * sqrt(time);
double sum payo�s=0;
for (int n=0; n<no sims; n++) {

double x=random normal();
double S1 = S * exp(R + SD * x);
sum payo�s += payo�(S1,X);
double S2 = S * exp(R + SD * (−x));
sum payo�s += payo�(S2,X);

};
return exp(−r*time) * (sum payo�s/(2*no sims));

};

C++ Code 12.7: Generic with antithetic variates
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12.5.3 Example

Let us see how these improvements change actual values. We use the same numbers as in the previous
example, but add estimation using control and antithetic variates.

C++ program:

void test simulation bs case using generic routine improving e�ciency(){
double S = 100; double K = 100; double r = 0.1;
double sigma = 0.25; double time = 1; int no sims = 50000;
cout << "Black Scholes call option price = "

<< option price call black scholes(S,K,r,sigma,time) << endl;
cout << "Simulated call option price = "

<< derivative price simulate european option generic(S,K,r,sigma,time, payo� call,no sims)
<< endl;

cout << "Simulated call option price, CV = "

<< derivative price simulate european option generic with control variate(S,K,r,sigma,time,
payo� call,no sims)

<< endl;
cout << "Simulated call option price, AV = "

<< derivative price simulate european option generic with antithetic variate(S,K,r,sigma,time,
payo� call,no sims)

<< endl;
cout << "Black Scholes put option price = " << option price put black scholes(S,K,r,sigma,time) << endl;
cout << "Simulated put option price = "

<< derivative price simulate european option generic(S,K,r,sigma,time,payo� put,no sims) << endl;
cout << "Simulated put option price, CV = "

<< derivative price simulate european option generic with control variate(S,K,r,sigma,time,
payo� put,no sims)

<< endl;
cout << "Simulated put option price, AV = "

<< derivative price simulate european option generic with antithetic variate(S,K,r,sigma,time,
payo� put,no sims)

<< endl;
};

Output from C++ program:

Black Scholes call option price = 14.9758

Simulated call option price = 14.995

Simulated call option price, CV = 14.9758

Simulated call option price, AV = 14.9919

Black Scholes put option price = 5.45954

Simulated put option price = 5.41861

Simulated put option price, CV = 5.42541

Simulated put option price, AV = 5.46043
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12.6 More exotic options

These generic routines can also be used to price other options. Any European option that only depends
on the terminal value of the price of the underlying security can be valued. Consider the binary options
discussed by e.g. Hull (2006). An cash or nothing call pays a �xed amount Q if the price of the asset is
above the exercise price at maturity, otherwise nothing. An asset or nothing call pays the price of the
asset if the price is above the exercise price at maturity, otherwise nothing. Both of these options are
easy to implement using the generic routines above, all that is necesary is to provide the payo� functions
as shown in code 12.8.

double payo� cash or nothing call(const double& price, const double& X){
if (price>=X) return 1;
return 0;

};

double payo� asset or nothing call(const double& price, const double& X){
if (price>=X) return price;
return 0;

};

C++ Code 12.8: Payo� binary options

Now, many exotic options are not simply functions of the terminal price of the underlying security, but
depend on the evolution of the price from �now� till the terminal date of the option. For example options
that depend on the average of the price of the underlying (Asian options). For such cases one will have
to simulate the whole path. We will return to these cases in the chapter on pricing of exotic options.

Further Reading Boyle (1977) is a good early source on the use of the Monte Carlo technique for
pricing derivatives. Simulation is also covered in Hull (2006).

Exercise 21.

Consider the pricing of an European Call option as implemented in code 12.2, and the generic formula for
pricing with Monte Carlo for European options that only depend on the terminal value of the underlying
security, as implemented in code 12.5.

Note the di�erence in the implementation of the lognormal simulation of terminal values. Why can one argue
that the �rst implementation is more e�cient than the other?
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C++ program:

void test simulation binary options(){
double S=100.0; double K=100.0; double r=0.1; double sigma=0.25;
double time=1.0; int no sims=5000;
cout << " cash or nothing, Q=1: "

<< derivative price simulate european option generic(S,K,r,sigma,time,
payo� cash or nothing call,
no sims)

<< endl;
cout << " control_variate "

<< derivative price simulate european option generic with control variate(S,K,r,sigma,time,
payo� cash or nothing call,
no sims)

<< endl;
cout << " antithetic_variate "

<< derivative price simulate european option generic with antithetic variate(S,K,r,sigma,time,
payo� cash or nothing call,
no sims)

<< endl;
cout << " asset or nothing: "

<< derivative price simulate european option generic(S,K,r,sigma,time,
payo� asset or nothing call,
no sims)

<< endl;
cout << " control_variate "

<< derivative price simulate european option generic with control variate(S,K,r,sigma,time,
payo� asset or nothing call,
no sims)

<< endl;
cout << " antithetic_variate "

<< derivative price simulate european option generic with antithetic variate(S,K,r,sigma,time,
payo� asset or nothing call,
no sims)

<< endl;
};

Output from C++ program:

cash or nothing, Q=1: 0.547427

control_variate 1.02552

antithetic_variate 0.549598

asset or nothing: 70.5292

control_variate 69.8451

antithetic_variate 70.2205
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Chapter 13

Approximations

There has been developed some useful approximations to various speci�c options. It is of course Amer-
ican options that are approximated. The particular example we will look at, is a general quadratic
approximation to American call and put prices.

13.1 A quadratic approximation to American prices due to Barone�Adesi

and Whaley.

We now discuss an approximation to the option price of an American option on a commodity, described
in Barone-Adesi and Whaley (1987) (BAW).1 The commodity is assumed to have a continuous payout
b. The starting point for the approximation is the (Black-Scholes) stochastic di�erential equation valid
for the value of any derivative with price V .

1
2
σ2S2VSS + bSVS − rV + Vt = 0 (13.1)

Here V is the (unknown) formula that determines the price of the contingent claim. For an European
option the value of V has a known solution, the adjusted Black Scholes formula. For American options,
which may be exercised early, there is no known analytical solution.

To do their approximation, BAW decomposes the American price into the European price and the early
exercise premium

C(S, T ) = c(S, T ) + εC(S, T )

Here εC is the early exercise premium. The insight used by BAW is that εC must also satisfy the same
partial di�erential equation. To come up with an approximation BAW transformed equation (13.1) into
one where the terms involving Vt are neglible, removed these, and ended up with a standard linear
homeogenous second order equation, which has a known solution.

The functional form of the approximation is shown in formula 13.1.

In implementing this formula, the only problem is �nding the critical value S∗. This is the classical
problem of �nding a root of the equation

g(S∗) = S∗ −X − c(S∗)− S∗

q2

(
1− e(b−r)(T−t)N (d1(S∗))

)
= 0

This is solved using Newton's algorithm for �nding the root. We start by �nding a �rst �seed� value S0.
The next estimate of Si is found by:

Si+1 = Si −
g()
g′

At each step we need to evaluate g() and its derivative g′().

g(S) = S −X − c(S)− 1
q2

S
(
1− e(b−r)(T−t)N(d1)

)
g′ (S) = (1− 1

q2
)
(
1− e(b−r)(T−t)N(d1)

)
+

1
q2

(e(b−r)(T−t)n(d1))
1

σ
√

T − t

where c(S) is the Black Scholes value for commodities. Code 13.1 shows the implementation of this
formula for the price of a call option.
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C(S, T ) =
{

c(S, T ) + A2

(
S
S∗

)q2
if S < S∗

S −X if S ≥ S∗

where

q2 =
1
2

(
−(N − 1) +

√
(N − 1)2 +

4M

K

)

A2 =
S∗

q2

(
1− e(b−r)(T−t)N (d1(S∗))

)
M =

2r

σ2
, N =

2b

σ2
, K(T ) = 1− e−r(T−t)

and S∗ solves

S∗ −X = c (S∗, T ) +
S∗

q2

(
1− e(b−r)(T−t)N (d1(S∗))

)
Formula 13.1: The functional form of the Barone Adesi Whaley approximation to the value of an
American call

Exercise 22.

The Barone-Adesi � Whaley insight can also be used to value a put option, by approximating the value of the
early exercise premium. For a put option the approximation is

P (S) = p(S, T ) + A1

(
S

S∗∗

)q1
if S > S∗∗

X − S if S ≤ S∗∗

A1 = −S∗∗

q1
(1− e(b−r)(T−t)N(−d1(S∗∗))

One again solves iteratively for S∗∗, for example by Newton's procedure, where now one would use

g(S) = X − S − p(S) +
S

q1

(
1− e(b−r)(T−t)N(−d1)

)

g′(S) = (
1
q1

− 1)
(
1− e(b−r)(T−t)N(−d1)

)
+

1
q1

e(b−r)(T−t) 1
σ
√

T − t
n(−d1)

1. Implement the calculation of the price of an American put option using the BAW approach.

1The approximation is also discussed in Hull (2006).
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#include <cmath>
#include <algorithm>
using namespace std;
#include "normdist.h" // normal distribution
#include "fin_recipes.h" // de�ne other option pricing formulas

const double ACCURACY=1.0e−6;

double option price american call approximated baw( const double& S,
const double& X,
const double& r,
const double& b,
const double& sigma,
const double& time) {

double sigma sqr = sigma*sigma;
double time sqrt = sqrt(time);
double nn = 2.0*b/sigma sqr;
double m = 2.0*r/sigma sqr;
double K = 1.0−exp(−r*time);
double q2 = (−(nn−1)+sqrt(pow((nn−1),2.0)+(4*m/K)))*0.5;

double q2 inf = 0.5 * ( −(nn−1) + sqrt(pow((nn−1),2.0)+4.0*m)); // seed value from paper
double S star inf = X / (1.0 − 1.0/q2 inf);
double h2 = −(b*time+2.0*sigma*time sqrt)*(X/(S star inf−X));
double S seed = X + (S star inf−X)*(1.0−exp(h2));

int no iterations=0; // iterate on S to �nd S star, using Newton steps
double Si=S seed;
double g=1;
double gprime=1.0;
while ((fabs(g) > ACCURACY)

&& (fabs(gprime)>ACCURACY) // to avoid exploding Newton's
&& ( no iterations++<500)
&& (Si>0.0)) {

double c = option price european call payout(Si,X,r,b,sigma,time);
double d1 = (log(Si/X)+(b+0.5*sigma sqr)*time)/(sigma*time sqrt);
g=(1.0−1.0/q2)*Si−X−c+(1.0/q2)*Si*exp((b−r)*time)*N(d1);
gprime=( 1.0−1.0/q2)*(1.0−exp((b−r)*time)*N(d1))

+(1.0/q2)*exp((b−r)*time)*n(d1)*(1.0/(sigma*time sqrt));
Si=Si−(g/gprime);

};
double S star = 0;
if (fabs(g)>ACCURACY) { S star = S seed; } // did not converge
else { S star = Si; };
double C=0;
double c = option price european call payout(S,X,r,b,sigma,time);
if (S>=S star) {

C=S−X;
}
else {

double d1 = (log(S star/X)+(b+0.5*sigma sqr)*time)/(sigma*time sqrt);
double A2 = (1.0−exp((b−r)*time)*N(d1))* (S star/q2);
C=c+A2*pow((S/S star),q2);

};
return max(C,c); // know value will never be less than BS value

};

C++ Code 13.1: Barone Adesi quadratic approximation to the price of a call option
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Consider the following set of parameters, used as an example in the Barone-Adesi and Whaley (1987)
paper: S = 100, X = 100, σ = 0.20, r = 0.08, b = −0.04. Price a call option with time to maturity of of
3 months.

C++ program:

void test baw approximation call(){
double S = 100; double X = 100; double sigma = 0.20;
double r = 0.08; double b = −0.04; double time = 0.25;
cout << " Call price using Barone-Adesi Whaley approximation = "

<< option price american call approximated baw(S,X,r,b,sigma,time) << endl;
};

Output from C++ program:

Call price using Barone-Adesi Whaley approximation = 5.74339

Example 13.1: Example using the BAW approximation
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Chapter 14

Average, lookback and other exotic options

We now look at a type of options that has received a lot of attention in later years. The distinguishing
factor of these options is that they depend on the whole price path of the underlying security between
today and the option maturity.

14.1 Bermudan options

A Bermudan option is, as the name implies,1 a mix of an European and American option. It is a
standard put or call option which can only be exercised at discrete dates throughout the life of the
option. The simplest way to do the pricing of this is again the binomial approximation, but now, instead
of checking at every node whether it is optimal to exercise early, only check at the nodes corresponding
to the potential exercise times. Code 14.1 shows the calculation of the Bermudan price using binomial
approximations. The times as which exercise can happen is passed as a vector argument to the routine,
and in the binomial a list of which nodes exercise can happen is calculated and checked at every step.

1Since Bermuda is somewhere between America and Europe...
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#include <cmath> // standard C mathematical library
#include <algorithm> // de�nes the max() operator
#include <vector> // STL vector templates
using namespace std;

double option price put bermudan binomial( const double& S, // spot price
const double& X, // exercice price
const double& r, // interest rate
const double& q, // continous payout
const double& sigma, // volatility
const double& time, // time to maturity
const vector<double>& potential exercise times,
const int& steps) { // no steps in binomial tree

double delta t=time/steps;
double R = exp(r*delta t); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(delta t)); // up movement
double uu = u*u;
double d = 1.0/u;
double p up = (exp((r−q)*delta t)−d)/(u−d);
double p down = 1.0−p up;
vector<double> prices(steps+1); // price of underlying
vector<double> put values(steps+1); // value of corresponding put

vector<int> potential exercise steps; // create list of steps at which exercise may happen
for (int i=0;i<potential exercise times.size();++i){

double t = potential exercise times[i];
if ( (t>0.0)&&(t<time) ) {

potential exercise steps.push back(int(t/delta t));
};

};

prices[0] = S*pow(d, steps); // �ll in the endnodes.
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i−1];
for (int i=0; i<=steps; ++i) put values[i] = max(0.0, (X−prices[i])); // put payo�s at maturity
for (int step=steps−1; step>=0; −−step) {

bool check exercise this step=false;
for (int j=0;j<potential exercise steps.size();++j){

if (step==potential exercise steps[j]) { check exercise this step=true; };
};
for (int i=0; i<=step; ++i) {

put values[i] = (p up*put values[i+1]+p down*put values[i])*Rinv;
prices[i] = d*prices[i+1];
if (check exercise this step) put values[i] = max(put values[i],X−prices[i]);

};
};
return put values[0];

};

C++ Code 14.1: Binomial approximation to Bermudan put option
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C++ program:

void test bermudan option(){
double S=80; double K=100; double r = 0.20;
double time = 1.0; double sigma = 0.25;
int steps = 500;
double q=0.0;
vector<double> potential exercise times; potential exercise times.push back(0.25);
potential exercise times.push back(0.5); potential exercise times.push back(0.75);
cout << " Bermudan put price = "

<< option price put bermudan binomial(S,K,r,q,sigma,time,potential exercise times,steps)
<< endl;

};

Output from C++ program:

Bermudan put price = 15.9079
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14.2 Asian options

The payo� depends on the average of the underlying price. An average price call has payo�

CT = max(0, S̄ −X),

where S̄ is the average of the underlying in the period between t and T .

Another Asian is the average strike call

CT = max(0, ST − S̄)

There are di�erent types of Asians depending on how the average S̄ is calculated. For the case of S being
lognormal and the average S̄ being a geometric average, there is an analytic formula due to Kemna and
Vorst (1990). Hull (2006) also discusses this case. It turns out that one can calculate this option using
the regular Black Scholes formula adjusting the volatility to σ/

√
3 and the dividend yield to

1
2

(
r + q +

1
6
σ2

)
in the case of continous sampling of the underlying price distribution.

Code 14.2 shows the calculation of the analytical price of an Asian geometric average price call.

#include <cmath>
using namespace std;
#include "normdist.h" // normal distribution de�nitions

double

option price asian geometric average price call(const double& S,
const double& X,
const double& r,
const double& q,
const double& sigma,
const double& time){

double sigma sqr = pow(sigma,2);
double adj div yield=0.5*(r+q+sigma sqr);
double adj sigma=sigma/sqrt(3.0);
double adj sigma sqr = pow(adj sigma,2);
double time sqrt = sqrt(time);
double d1 = (log(S/X) + (r−adj div yield + 0.5*adj sigma sqr)*time)/(adj sigma*time sqrt);
double d2 = d1−(adj sigma*time sqrt);
double call price = S * exp(−adj div yield*time)* N(d1) − X * exp(−r*time) * N(d2);
return call price;

};

C++ Code 14.2: Analytical price of an Asian geometric average price call

C++ program:

void test analytical geometric average(){
double S=100; double K=100; double q=0;
double r=0.06; double sigma=0.25; double time=1.0;
cout << " Analytical geometric average = "

<< option price asian geometric average price call(S,K,r,q,sigma,time)
<< endl;

};

Output from C++ program:

Analytical geometric average = 5.3562
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14.3 Lookback options

The payo� from lookback options depend on the maximum or minimum of the underlying achieved
through the period. The payo� from the lookback call is the terminal price of the undelying less the
minimum value

CT = max(0, ST − min
τ∈[t,T ]

Sτ )

For this particular option an analytical solution has been found, due to Goldman, Sosin, and Gatto
(1979), which is shown in formula 14.1 and implemented in code 14.3

C = Se−q(T−t)N(a1)− Se−q(T−t) σ2

2(r − q)
N(−a1)− Smine−r(T−t)

(
N(a2)−

σ2

2(r − q)
eY1N(−a3)

)

a1 =
ln
(

S
Smin

)
+ (r − q + 1

2σ2)(T − t)

σ
√

T − t

a2 = a1 − σ
√

T − t

a3 =
ln
(

S
Smin

)
+
(
−r + q + 1

2σ2
)
(T − t)

σ
√

T − t

Y1 =
2
(
r − q − 1

2σ2
)
ln
(

S
Smin

)
σ2

Formula 14.1: Analytical formula for a lookback call

#include <cmath>
using namespace std;
#include "normdist.h"

double option price european lookback call(const double& S,
const double& Smin,
const double& r,
const double& q,
const double& sigma,
const double& time){

if (r==q) return 0;
double sigma sqr=sigma*sigma;
double time sqrt = sqrt(time);
double a1 = (log(S/Smin) + (r−q+sigma sqr/2.0)*time)/(sigma*time sqrt);
double a2 = a1−sigma*time sqrt;
double a3 = (log(S/Smin) + (−r+q+sigma sqr/2.0)*time)/(sigma*time sqrt);
double Y1 = 2.0 * (r−q−sigma sqr/2.0)*log(S/Smin)/sigma sqr;
return S * exp(−q*time)*N(a1)− S*exp(−q*time)*(sigma sqr/(2.0*(r−q)))*N(−a1)

− Smin * exp(−r*time)*(N(a2)−(sigma sqr/(2*(r−q)))*exp(Y1)*N(−a3));
};

C++ Code 14.3: Price of lookback call option
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C++ program:

void test exotics lookback(){
double S=100; double Smin=S; double q = 0; double r = 0.06;
double sigma = 0.346; double time = 1.0;
cout << " Lookback call price = "

<< option price european lookback call(S,Smin,r,q,sigma,time) << endl;
};

Output from C++ program:

Lookback call price = 27.0713
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14.4 Monte Carlo Pricing of options whose payo� depend on the whole price

path

Monte Carlo simulation can be used to price a lot of di�erent options. The limitation is that the options
should be European. American options can not be priced by simulation methods. In chapter 12 we
looked at a general simulation case where we wrote a generic routine which we passed a payo� function
to, and the payo� function was all that was necessary to de�ne an option value. The payo� function
in that case was a function of the terminal price of the underlying security. The only di�erence to the
previous case is that we now have to generate a price sequence and write the terminal payo� of the
derivative in terms of that, instead of just generating the terminal value of the underlying security from
the lognormal assumption.

14.4.1 Generating a series of lognormally distributed variables

Recall that one will generate lognormally distributed variables as

ST = Ste
(r− 1

2 σ2)(T−t)+σ
√

T−tx̃

where the current time is t and terminal date is T . To simulate a price sequence one splits this period
into say N periods, each of length

∆t =
T − t

N

-

Timet Tt + ∆t t + 2∆t t + 3∆t · · ·

Each step in the simulated price sequence is

St+∆t = Ste
(r− 1

2 σ2)∆+σ
√

∆tx̃

Code 14.4 shows how one would simulate a sequence of lognormally distributed variables.

#include <cmath>
#include <vector>
using namespace std;
#include "normdist.h"

vector<double>
simulate lognormally distributed sequence(const double& S, // current value of underlying

const double& r, // interest rate
const double& sigma, // volatitily
const double& time, // time to �nal date
const int& no steps){ // number of steps

vector<double> prices(no steps);
double delta t = time/no steps;
double R = (r−0.5*pow(sigma,2))*delta t;
double SD = sigma * sqrt(delta t);
double S t = S; // initialize at current price
for (int i=0; i<no steps; ++i) {

S t = S t * exp(R + SD * random normal());
prices[i]=S t;

};
return prices;

};

C++ Code 14.4: Simulating a sequence of lognormally distributed variables

This code is then used in the generic routine to do calculations, as shown in code 14.5.
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#include <cmath>
using namespace std;
#include "fin_recipes.h"

double

derivative price simulate european option generic(const double& S, // price of underlying
const double& X, // used by user provided payo� function
const double& r, // risk free interest rate
const double& sigma, // volatility
const double& time, // time to maturity
double payo�(const vector<double>& prices,

const double& X),
// user provided function
const int& no steps, // number of steps in generated price sequence
const int& no sims) { // number of simulations to run

double sum payo�s=0;
for (int n=0; n<no sims; n++) {

vector<double>prices = simulate lognormally distributed sequence(S,r,sigma,time,no steps);
sum payo�s += payo�(prices,X);

};
return exp(−r*time) * (sum payo�s/no sims);

};

C++ Code 14.5: Generic routine for pricing European options which

#include <cmath>
#include <numeric>
#include <vector>
using namespace std;

double payo� arithmetric average call(const vector<double>& prices, const double& X) {
double sum=accumulate(prices.begin(), prices.end(),0.0);
double avg = sum/prices.size();
return max(0.0,avg−X);

};

double payo� geometric average call(const vector<double>& prices, const double& X) {
double logsum=log(prices[0]);
for (unsigned i=1;i<prices.size();++i){ logsum+=log(prices[i]); };
double avg = exp(logsum/prices.size());
return max(0.0,avg−X);

};

C++ Code 14.6: Payo� function for Asian call option

To price an option we are then only in need of a de�nition of a payo� function. We consider a couple of
examples. One is the case of an Asian option, shown in code 14.6.

Another is the payo� for a lookback, shown in code 14.7
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#include <vector>
#include <algorithm>
using namespace std;

double payo� lookback call(const vector<double>& prices, const double& unused variable) {
double m = *min element(prices.begin(),prices.end());
return prices.back()−m; // always positive or zero

};

double payo� lookback put(const vector<double>& prices, const double& unused variable) {
double m = *max element(prices.begin(),prices.end());
return m−prices.back(); // max is always larger or equal.

};

C++ Code 14.7: Payo� function for lookback option
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14.5 Control variate

As discussed in chapter 12, a control variate is a price which we both have an analytical solution of and
�nd the Monte Carlo price of. The di�erences between these two prices is a measure of the bias in the
Monte Carlo estimate, and is used to adjust the Monte Carlo estimate of other derivatives priced using
the same random sequence.

Code 14.8 shows the Black Scholes price used as a control variate. An alternative could have been the
analytical lookback price, or the analytical solution for a geometric average price call shown earlier.

#include "fin_recipes.h"

#include <cmath>
using namespace std;

double

derivative price simulate european option generic with control variate(const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time,
double payo�(const vector<double>& prices,

const double& X),
const int& no steps,
const int& no sims) {

double c bs = option price call black scholes(S,S,r,sigma,time);// price an at the money Black Scholes call
double sum payo�s=0;
double sum payo�s bs=0;
for (int n=0; n<no sims; n++) {

vector<double> prices = simulate lognormally distributed sequence(S,r,sigma,time, no steps);
double S1= prices.back();
sum payo�s += payo�(prices,X);
sum payo�s bs += payo� call(S1,S); // simulate at the money Black Scholes price

};
double c sim = exp(−r*time) * (sum payo�s/no sims);
double c bs sim = exp(−r*time) * (sum payo�s bs/no sims);
c sim += (c bs−c bs sim);
return c sim;

};

C++ Code 14.8: Control Variate

References Exotic options are covered in Hull (2006). Rubinstein (1993) has an extensive discussion
of analytical solutions to various exotic options.
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C++ program:

void test simulate general european(){
cout << "Testing general simulation of European options " << endl;
double S=100; double K=120; double r = 0.10;
double time = 1.0; double sigma = 0.25; int no sims = 10000; int no steps = 250;
double q=0;

cout << " simulated arithmetric average "

<< " S= " << S << " r= " << r << " price="

<< derivative price simulate european option generic(S,K,r,sigma,time,
payo� arithmetric average call,
no steps,no sims)

<< endl;

cout << " simulated geometric average = "

<< derivative price simulate european option generic(S,K,r,sigma,time,
payo� geometric average call,
no steps,no sims)

<< endl;
cout << " analytical lookback put = "

<< option price european lookback put(S,S,r,q,sigma,time)
<< endl;

cout << " simulated lookback put = "

<< derivative price simulate european option generic(S,0,r,sigma,time,
payo� lookback put,
no steps,no sims)

<< endl;
cout << " analytical lookback call = "

<< option price european lookback call(S,S,r,q,sigma,time)
<< endl;

cout << " simulated lookback call = "

<< derivative price simulate european option generic(S,0,r,sigma,time,
payo� lookback call,
no steps,no sims)

<< endl;
cout << " simulated lookback call using control variates = "

<< derivative price simulate european option generic with control variate(S,0,r,sigma,time,
payo� lookback call,
no steps,no sims)

<< endl;
};

Output from C++ program:

Testing general simulation of European options

simulated arithmetric average S= 100 r= 0.1 price=1.49696

simulated geometric average = 1.38017

analytical lookback put = 16.2665

simulated lookback put = 14.9846

analytical lookback call = 22.8089

simulated lookback call = 21.9336

simulated lookback call using control variates = 22.0685
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Chapter 15

Alternatives to the Black Scholes type option formula

A large number of alternative formulations to the Black Scholes analysis has been proposed. Very few
of them have seen any widespread use, but we will look at some of these alternatives.

15.1 Merton's Jump di�usion model.

Merton has proposed a model where in addition to a Brownian Motion term, the price process of the
underlying is allowed to have jumps. The risk of these jumps is assumed to not be priced.

In the following we look at an implementation of a special case of Merton's model, described in (Hull,
1993, pg 454), where the size of the jump has a normal distribution. λ and κ are parameters of the jump
distribution. The price of an European call option is

c =
∞∑

n=0

eλ′τ (λ′τ)n

n!
CBS(S, X, rn, σ2

n, T − t)

where

τ = T − t

λ′ = λ(1 + κ)

CBS(·) is the Black Scholes formula, and

σ2
n = σ2 +

nδ2

τ

rn = r − λκ +
n ln(1 + κ)

τ

In implementing this formula, we need to terminate the in�nite sum at some point. But since the
factorial function is growing at a much higher rate than any other, that is no problem, terminating
at about n = 50 should be on the conservative side. To avoid numerical di�culties, use the following
method for calculation of

eλ′τ (λ′τ)n

n!
= exp

(
ln

(
eλ′τ (λ′τ)n

n!

))
= exp

(
−λ′τ + n ln(λ′τ)−

n∑
i=1

ln i

)
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#include <cmath>
#include "fin_recipes.h"

double option price call merton jump di�usion( const double& S,
const double& X,
const double& r,
const double& sigma,
const double& time to maturity,
const double& lambda,
const double& kappa,
const double& delta) {

const int MAXN=50;
double tau=time to maturity;
double sigma sqr = sigma*sigma;
double delta sqr = delta*delta;
double lambdaprime = lambda * (1+kappa);
double gamma = log(1+kappa);
double c = exp(−lambdaprime*tau)*option price call black scholes(S,X,r−lambda*kappa,sigma,tau);
double log n = 0;
for (int n=1;n<=MAXN; ++n) {

log n += log(double(n));
double sigma n = sqrt( sigma sqr+n*delta sqr/tau );
double r n = r−lambda*kappa+n*gamma/tau;
c += exp(−lambdaprime*tau+n*log(lambdaprime*tau)−log n)*

option price call black scholes(S,X,r n,sigma n,tau);
};
return c;

};

C++ Code 15.1: Mertons jump di�usion formula

C++ program:

#include <cmath>

void test merton jump di� call(){
double S=100;
double K=100;
double r=0.05;
double sigma=0.3;
double time to maturity=1;
double lambda=0.5;
double kappa=0.5;
double delta=0.5;
cout << " Merton Jump diffusion call = "

<< option price call merton jump di�usion(S,K,r,sigma,time to maturity,lambda,kappa,delta)
<< endl;

};

Output from C++ program:

Merton Jump diffusion call = 23.2074

Example 15.1: Mertons Jump di�usion formula
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Chapter 16

Using a library for matrix algebra

What really distinguishes C++ from standard C is the ability to extend the language by creating classes
and collecting these classes into libraries. A library is a collection of classes and routines for one particular
purpose. We have already seen this idea when creating the date and term_structure classes. However,
one should not necessarily always go ahead and create such classes from scratch. It is just as well to use
somebody else's class, as long as it is correct and well documented and ful�lls a particular purpose.

16.1 An example matrix class

Use Newmat as an example matrix class.

16.2 Finite Di�erences

We use the case of implicit �nite di�erence calculations to illustrate matrix calculations in action.

The method of choice for any engineer given a di�erential equation to solve is to numerically approximate
it using a �nite di�erence scheme, which is to approximate the continous di�erential equation with a
discrete di�erence equation, and solve this di�erence equation.

In the following we implement the implicit �nite di�erences.

Explicit �nite di�erences was discussed earlier, we postponed the implicit case to now because it is much
simpli�ed by a matrix library.

16.3 European Options

For European options we do not need to use the �nite di�erence scheme, but we show how one would
�nd the european price for comparison purposes.
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#include <cmath>
#include "newmat.h" // de�nitions for newmat matrix library
using namespace NEWMAT;

#include <vector> // standard STL vector template
#include <algorithm>
using namespace std;

double option price put european �nite di� implicit(const double& S,
const double& K,
const double& r,
const double& sigma,
const double& time,
const int& no S steps,
const int& no t steps) {

double sigma sqr = sigma*sigma;
// need no S steps to be even:
int M; if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0*S/M;
vector<double> S values(M+1);
for (int m=0;m<=M;m++) { S values[m] = m*delta S; };
int N=no t steps;
double delta t = time/N;

BandMatrix A(M+1,1,1); A=0.0;
A.element(0,0) = 1.0;
for (int j=1;j<M;++j) {

A.element(j,j−1) = 0.5*j*delta t*(r−sigma sqr*j); // a[j]
A.element(j,j) = 1.0 + delta t*(r+sigma sqr*j*j); // b[j];
A.element(j,j+1) = 0.5*j*delta t*(−r−sigma sqr*j); // c[j];

};
A.element(M,M)=1.0;
ColumnVector B(M+1);
for (int m=0;m<=M;++m){ B.element(m) = max(0.0,K−S values[m]); };
ColumnVector F=A.i()*B;
for(int t=N−1;t>0;−−t) {

B = F;
F = A.i()*B;

};
return F.element(M/2);

};

C++ Code 16.1: Calculation of price of European put using implicit �nite di�erences
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16.4 American Options

We now compare the American versions of the same algoritms, the only di�erence being the check for
exercise at each point.

#include <cmath>
#include "newmat.h" // de�nitions for newmat matrix library
using namespace NEWMAT;

#include <vector>
#include <algorithm>
using namespace std;

double option price put american �nite di� implicit(const double& S,
const double& K,
const double& r,
const double& sigma,
const double& time,
const int& no S steps,
const int& no t steps) {

double sigma sqr = sigma*sigma;
int M; // need no S steps to be even:
if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0*S/M;
double S values[M+1];
for (int m=0;m<=M;m++) { S values[m] = m*delta S; };
int N=no t steps;
double delta t = time/N;

BandMatrix A(M+1,1,1); A=0.0;
A.element(0,0) = 1.0;
for (int j=1;j<M;++j) {

A.element(j,j−1) = 0.5*j*delta t*(r−sigma sqr*j); // a[j]
A.element(j,j) = 1.0 + delta t*(r+sigma sqr*j*j); // b[j];
A.element(j,j+1) = 0.5*j*delta t*(−r−sigma sqr*j); // c[j];

};
A.element(M,M)=1.0;
ColumnVector B(M+1);
for (int m=0;m<=M;++m){ B.element(m) = max(0.0,K−S values[m]); };
ColumnVector F=A.i()*B;
for(int t=N−1;t>0;−−t) {

B = F;
F = A.i()*B;
for (int m=1;m<M;++m) { // now check for exercise

F.element(m) = max(F.element(m), K−S values[m]);
};

};
return F.element(M/2);

};

C++ Code 16.2: Calculation of price of American put using implicit �nite di�erences
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C++ program:

void test implicit �nite di�erences(){
double S = 50.0;
double K = 50.0;
double r = 0.1;
double sigma = 0.4;
double time=0.5;
int no S steps=200;
int no t steps=200;
cout << " black scholes put price = " << option price put black scholes(S,K,r,sigma,time)<< endl;
cout << " implicit Euro put price = ";
cout << option price put european �nite di� implicit(S,K,r,sigma,time,no S steps,no t steps) << endl;
cout << " implicit American put price = ";
cout << option price put american �nite di� implicit(S,K,r,sigma,time,no S steps,no t steps) << endl;

};

Output from C++ program:

black scholes put price = 4.35166

implicit Euro put price = 4.34731

implicit American put price = 4.60064
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Chapter 17

The Mean Variance Frontier

We now �nally encounter a classical topic in �nance, mean variance analysis. This has had to wait
because we needed the tool of a linear algebra class before dealing with this.

Mean variance analysis concerns investors choices between portfolios of risky assets, and how an investor
chooses portfolio weights. Let rp be a portfolio return. We assume that investors preferences over
portfolios p satisfy a mean variance utility representation, u(p) = u(E[rp], σ(rp)), with utility increasing
in expected return (∂u/∂E[rp] > 0) and decreasing in variance (∂u/∂var(rp) < 0). In this part we
consider the representation of the portfolio opportunity set of such decision makers. There are a number
of useful properties of this opportunity set which follows purely from the mathematical formulation of
the optimization problem. It is these properties we focus on here.

17.1 Setup

We assume there exists n ≥ 2 risky securities, with expected returns e

e =


E[r1]
E[r2]
...

E[rn]


and covariance matrix V:

V =


σ(r1, r1) σ(r1, r2) . . .
σ(r2, r1) σ(r2, r2) . . .

...
σ(rn, r1) . . . σ(rn, rn)


The covariance matrix V is assumed to be invertible.

A portfolio p is de�ned by a set of weights w invested in the risky assets.

w =


ω1

ω2

...
ωn

 ,

where wi is the fraction of the investors wealth invested in asset i. Note that the weights sum to one.
The expected return on a portfolio is calculated as

E[rp] = w′e

and the variance of the portfolio is

σ2(rp) = w′Vw

Code 17.1 implements these calculations.
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#include "newmat.h"

#include <cmath>
using namespace std;
using namespace NEWMAT;

double mv calculate mean(const Matrix& e, const Matrix& w){
Matrix tmp = e.t()*w;
return tmp.element(0,0);

};

double mv calculate variance(const Matrix& V, const Matrix& w){
Matrix tmp = w.t()*V*w;
return tmp.element(0,0);

};

double mv calculate st dev(const Matrix& V, const Matrix& w){
double var = mv calculate variance(V,w);
return sqrt(var);

};

C++ Code 17.1: Mean variance calculations

C++ program:

#include "newmat.h"

#include "mv_calc.h"

void test mean variance calculations(){
cout << "Simple example of mean variance calculations " << endl;
Matrix e(2,1);
e.element(0,0)=0.05; e.element(1,0)=0.1;
Matrix V(2,2);
V.element(0,0)=1.0; V.element(1,0)=0.0;
V.element(0,1)=0.0; V.element(1,1)=1.0;
Matrix w(2,1);
w.element(0,0)=0.5;
w.element(1,0)=0.5;
cout << " mean " << mv calculate mean(e,w) << endl;
cout << " variance " << mv calculate variance(V,w) << endl;
cout << " stdev " << mv calculate st dev(V,w) << endl;

};

Output from C++ program:

Simple example of mean variance calculations

mean 0.075

variance 0.5

stdev 0.707107

17.2 The minimum variance frontier

A portfolio is a frontier portfolio if it minimizes the variance for a given expected return, that is, a
frontier portfolio p solves

wp = arg min
w

1
2
w′Vw

subject to:

w′e = E[r̃p]

w′1 = 1

The set of all frontier portfolios is called the minimum variance frontier.
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17.3 Calculation of frontier portfolios

Proposition 1 If the matrix V is full rank, and there are no restrictions on shortsales, the weights wp

for a frontier portfolio p with mean E[r̃p] can be found as

wp = g + hE[rp]

where

g =
1
D

(B1′ −Ae′)V−1

h =
1
D

(Ce′ −A1′)V−1

A = 1′V−1e

B = e′V−1e

C = 1′V−11

A =
[

B A
A C

]
D = BC −A2 = |A|

Proof

Any minimum variance portfolio solves the program

wp = arg min
w

1

2
w′Vw

subject to

w′e = E[r̃p]

w′1 = 1

Set up the Lagrangian corresponding to this problem

L(w, λ, γ|e,V) =
1

2
w′Vw − λ

`
E[r̃p] −w′e

´
− γ(1 −w′1)

Di�erentiate

∂L

∂w
= w′V − λe′ − γ1′ = 0

∂L

∂λ
= E[rp] −w′e = 0

∂L

∂γ
= 1 −w′1 = 0

Rewrite conditions above as (note that this requires the invertibility of V.

w′ = λe′V −1 − γ1′V−1 (17.1)

w′e = E[r̃p] (17.2)

w′1 = 1 (17.3)
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Post-multiply the �rst equation with e and recognise the expression for E[rp] in the second equation

w′e = E[rp] = λe′V−1e + γ1′V−1e

Similarly post-multiply the �rst equation with 1 and recognise the expression for 1 in the second equation

w′1 = 1 = λe′V−11 + γ1′V−11

With the de�nitions of A, B, C and D above, this becomes the following system of equations
E[rp] = λB + γA
1 = λA + γC

ff
Solving for λ and γ, get

γ =
B − AE[rp]

D

λ =
CE[rp] − A

D

Plug in expressions for λ and γ into equation (17.1) above, and get

w′ =
1

D

`
B1′ − Ae′

´
V−1 +

1

D

`
Ce′ − A1′

´
V−1E[rp] = g + hE[rp]

Note that the portfolio de�ned by weights g is a portfolio with expected return 0, and that the portfolio
de�ned by weights (g + h) is a portfolio with expected return 1. Note also the useful property that
g1′ = 1, and h1′ = 0.
Code 17.2 does this calculation.

#include "newmat.h"

using namespace NEWMAT;

ReturnMatrix mv calculate portfolio given mean unconstrained(const Matrix& e,
const Matrix& V,
const double& r){

int no assets=e.Nrows();
Matrix ones = Matrix(no assets,1); for (int i=0;i<no assets;++i){ ones.element(i,0) = 1; };
Matrix Vinv = V.i(); // inverse of V
Matrix A = (ones.t()*Vinv*e); double a = A.element(0,0);
Matrix B = e.t()*Vinv*e; double b = B.element(0,0);
Matrix C = ones.t()*Vinv*ones; double c = C.element(0,0);
Matrix D = B*C − A*A; double d = D.element(0,0);
Matrix Vinv1=Vinv*ones;
Matrix Vinve=Vinv*e;
Matrix g = (Vinv1*b − Vinve*a)*(1.0/d);
Matrix h = (Vinve*c − Vinv1*a)*(1.0/d);
Matrix w = g + h*r;
w.Release();
return w;

};

C++ Code 17.2: Calculating the unconstrained frontier portfolio given an expected return

17.4 The global minimum variance portfolio

The portfolio that minimizes variance regardless of expected return is called the global minimum variance

portfolio. Let mvp be the global minimum variance portfolio.
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C++ program:

#include "mv_calc.h"

void test mean variance portfolio calculation(){
cout << "Testing portfolio calculation " << endl;
Matrix e(2,1);
e.element(0,0)=0.05; e.element(1,0)=0.1;
Matrix V(2,2);
V.element(0,0)=1.0; V.element(1,0)=0.0;
V.element(0,1)=0.0; V.element(1,1)=1.0;
double r=0.075;
Matrix w = mv calculate portfolio given mean unconstrained(e,V,r);
cout << " suggested portfolio: ";
cout << " w1 = " << w.element(0,0) << " w2 = " << w.element(1,0) << endl;

};

Output from C++ program:

Testing portfolio calculation

suggested portfolio: w1 = 0.5 w2 = 0.5

Proposition 2 (Global Minimum Variance Portfolio) The global minimum variance portfolio has

weights

w′
mvp =

(
1′V−11

)−1
1′V−1 =

1
C

1′V−1,

expected return E[rmvp] = A
C and variance var(rmvp) = 1

C .

E[r]

σ(r)
-

6

A
C

q
1
C

17.5 E�cient portfolios

Portfolios on the minimum variance frontier with expected returns higher than or equal to E[rmvp] are
called e�cient portfolios.

E[r]

σ(r)
-

6

E[rmvp]

σ(rmvp)
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17.6 The zero beta portfolio

Proposition 3 For any portfolio p on the frontier, there is a frontier portfolio zc(p) satisfying

cov(rzc(p), rp) = 0.

This portfolio is called the zero beta portfolio relative to p. The zero beta portfolio zb(p) has return

E[rzc(p)] =
A

C
−

D
C2

E[rp]− A
C

-

6

mvps
szc(p)E[rzc(p)]

s
p

Note that if p is an e�cient portfolio on the mean variance frontier then zc(p) is ine�cient. Conversely,
if p is ine�cient zc(p) is e�cient.

E[r]

-

6

σ(r)

�
�

�
�

�
�

�sp

szc(p)

s mvp

17.7 Allowing for a riskless asset.

Suppose have N risky assets with weights w and one riskless assets with return rf .

Intuitively, the return on a portfolio with a mix of risky and risky assets can be written as

E[rp] = weight in risky× return risky + weight riskless × rf

which in vector form is:

E[rp] = w′e + (1−w′1)rf

Proposition 4 An e�cient portfolio in the presence of a riskless asset has the weights

wp = V−1(e− 1rf )
E[rp]− rf

H

where

H = (e− 1rf )′V−1(e− 1rf )
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The variance of the e�cient portfolio is

σ2(rp) =
(E[rp]− rf )2

H

Note that standard deviation is a linear function of E[rp]. The e�cient set is a line in mean-standard
deviation space.

17.8 E�cient sets with risk free assets.

Suppose rf < A
C . Then the e�cient set is the line from (0, rf ) through tangency on the e�cient set of

risky assets.

E[r]

-

6

σ(r)

�
�

�
�

�
�se

rf

@
@

@
@

@
@

s
mvp

A
C

q
1
C

Suppose rf > A
C . Then the e�cient set is the two half-lines starting from (0, rf ).

E[r]

-

6

σ(r)

�
�

�
�

�
�

se

rf

@
@

@
@

@
@

smvp
A
C

q
1
C

If rf = A
C , the weight in the risk free asset is one. The risky portfolio is an zero investment portfolio.

The e�cient set consists of two asymptotes toward the e�cient set of risky assets.

E[r]

-

6

σ(r)

�
�

�
�

�
�

@
@

@
@

@
@

smvp
A
C

q
1
C
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17.9 The Sharpe Ratio

The Sharpe ratio of a given portfolio p is de�ned as

Sp =
E[rp]− rf

σ(rp)

The Sharpe ratio Sp of a portfolio p is the slope of the line in mean-standard deviations space from the
risk free rate through p. Note that in the case with a risk free asset, the tangency portfolio has the
maximal Sharpe Ratio on the e�cient frontier.

17.10 Short-sale constraints

So far the analysis has put no restrictions on the set of weights wp that de�nes the minimum variance
frontier. For practical applications, existence of negative weights is problematic, since this involves selling
securities short.

This has led to the investigation of restricted mean variance frontiers, where the weights are constrained
to be non-negative.

De�nition 1 A short sale resctricted minimum variance portfolio p solves

wp = arg min
w

1
2
w′Vw

subject to

w′e = E[r̃p]

w′1 = 1

w′ ≥ 0

Such short sale resctricted minimum variance portfolio portfolios are much harder to deal with ana-
lytically, since they do not admit a general solution, one rather has to investigate the Kuhn-Tucker
conditions for corner solutions etc. To deal with this problem in practice one will use a subroutine for
solving constrained optimization problems.

Readings and Sources The classical sources for this material are Merton (1972) and Roll (1977a).
(Huang and Litzenberger, 1988, Ch 3) has a good textbook discussion of it.
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Chapter 18

Pricing of bond options, basic models

The area of �xed income securities is one where a lot of work is being done in creating advanced math-
ematical models for pricing of �nancial securities, in particular �xed income derivatives. The focus of
the modelling in this area is on modelling the term structure of interest rates and its evolution over
time, which is then used to price both bonds and �xed income derivatives. However, in some cases one
does not need the machinery of term structure modelling which we'll look at in later chapters, and price
derivatives by modelling the evolution of the bond price directly.

Speci�cally, suppose that the price of a Bond follows a Geometric Brownian Motion process, just like the
case we have studied before. This is not a particularly realistic assumption for the long term behaviour
of bond prices, since any bond price converges to the bond face value at the maturity of the bond. The
Geometric Brownian motion may be OK for the case of short term options on long term bonds.

18.1 Black Scholes bond option pricing

Given the assumed Brownian Motion process, prices of European Bond Options can be found using the
usual Black Scholes formula, as shown in code 18.1 for a zero coupon bond and code 18.2 for the case of
an option on a coupon bond.

#include <cmath>
#include "normdist.h"

double bond option price put zero black scholes(const double& B,
const double& X,
const double& r,
const double& sigma,
const double& time){

double time sqrt = sqrt(time);
double d1 = (log(B/X)+r*time)/(sigma*time sqrt) + 0.5*sigma*time sqrt;
double d2 = d1−(sigma*time sqrt);
double p = X * exp(−r*time) * N(−d2) − B * N(−d1);
return p;

};

C++ Code 18.1: Black scholes price for European call option on zero coupon bond
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#include <cmath>
#include <vector>
using namespace std;
#include "normdist.h"

#include "fin_recipes.h"

double bond option price put coupon bond black scholes( const double& B,
const double& X,
const double& r,
const double& sigma,
const double& time,
const vector<double> coupon times,
const vector<double> coupon amounts){

double adjusted B=B;
for (unsigned int i=0;i<coupon times.size();i++) {

if (coupon times[i]<=time) {
adjusted B −= coupon amounts[i] * exp(−r*coupon times[i]);

};
};
return bond option price put zero black scholes(adjusted B,X,r,sigma,time);

};

C++ Code 18.2: Black scholes price for European call option on coupon bond
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18.2 Binomial bond option pricing

Since we are in the case of geometric Brownian motion, the usual binomial approximation can be used
to price American options, where the bond is the underlying security. Code 18.3 shows the calculation
of a put price

#include <cmath> // standard mathematical library
#include <algorithm> // de�ning the max() operator
#include <vector> // STL vector templates
using namespace std;

double bond option price put american binomial( const double& B, // Bond price
const double& K, // exercise price
const double& r, // interest rate
const double& sigma, // volatility
const double& t, // time to maturity
const int& steps){ // no steps in binomial tree

double R = exp(r*(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(t/steps)); // up movement
double uu = u*u;
double d = 1.0/u;
double p up = (R−d)/(u−d);
double p down = 1.0−p up;
vector<double> prices(steps+1); // price of underlying
vector<double> put values(steps+1); // value of corresponding put

prices[0] = B*pow(d, steps); // �ll in the endnodes.
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i−1];
for (int i=0; i<=steps; ++i) put values[i] = max(0.0, (K−prices[i])); // put payo�s at maturity
for (int step=steps−1; step>=0; −−step) {

for (int i=0; i<=step; ++i) {
put values[i] = (p up*put values[i+1]+p down*put values[i])*Rinv;
prices[i] = d*prices[i+1];
put values[i] = max(put values[i],(K−prices[i])); // check for exercise

};
};
return put values[0];

};

C++ Code 18.3: Binomial approximation to american bond option price
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C++ program:

void test bond option gbm pricing(){
double B=100;
double K=100;
double r=0.05;
double sigma=0.1;
double time=1;
cout << " zero coupon put option price = "

<< bond option price put zero black scholes(B,K,r,sigma,time) << endl;

vector<double> coupon times; coupon times.push back(0.5);
vector<double> coupons; coupons.push back(1);
cout << " coupon bond put option price = "

<< bond option price put coupon bond black scholes(B,K,r,sigma,time,coupon times,coupons);
cout << endl;

int steps=100;
cout << " zero coupon american put option price, binomial = "

<< bond option price put american binomial(B,K,r,sigma,time,steps) << endl;
};

Output from C++ program:

zero coupon put option price = 1.92791

coupon bond put option price = 2.22852

zero coupon american put option price, binomial = 2.43282
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Chapter 19

Credit risk

Option pricing has obvious applications to the pricing of risky bonds.

19.1 The Merton Model

This builds on the Black and Scholes (1973) and Merton (1973) framework to �nd the value of the debt
issued by the �rm. The ideas were already in Black and Scholes, who discussed the view of the �rm as
a call option.

Assume debt structure: There is a single debt issue. Debt is issued as a zero coupon bond. The bond is
due on a given date T .

Assuming the �rm value V follows the usual Brownian motion proces, debt is found as a closed form
solution, similar in structure to the Black Scholes equation for a call option.

Easiest seen from the interpretation of �rm debt as the price of risk free debt, minus the value of a put
option.

Price debt by the price B of risk free debt, and then subtract the price of the put, using the Black Scholes
formula.

The Black Scholes formula for a call option is

c = S ·N(d1)−K · e−r(T−t)N(d2)

where

d1 =
ln
(

S
K

)
+ (r + 1

2σ)(T − t)
σ
√

T − t

d2 = d1 − σ
√

T − t

N(·) = The cumulative normal distribution

p = Ke−r(T−t)N(−d2)− SN(−d1)

In the context here, reinterpret S as V , �rm value. The put is priced as

p = Ke−r(T−t)N(−d2)− VtN(−d1)

where

d1 =
ln
(

Vt

K

)
+ (r + 1

2σ)(T − t)
σ
√

T − t

Note on interpretation: The spread between risky and risk free debt determined solely by the price of
the put option.

19.2 Issues in implementation

• Firm value and �rm volatility is unobservable.

• The model assumes a simple debt structure, most debt structures tend to be more complex.
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The current value of the �rm V = 100. The �rm has issued one bond with face value 90, which is due
to be paid one year from now. The risk free interest rate is 5% and the volatility of the �rms value is
25%. Determine the value of the debt.

C++ program:

#include "fin_recipes.h"

#include <cmath>

void test credit risk(){
cout << " Credit Risk Calculation " << endl;
double V=100; double F=90; double r=0.05; double T=1; double sigma=0.25;
double p = option price put black scholes(V,F,r,sigma,T);
cout << " Debt value = " << exp(−r*T)*F − p << endl;

};

Output from C++ program:

Credit Risk Calculation

Debt value = 81.8592
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Chapter 20

Term Structure Models

We now expand on the analysis of the term structure in chapter 4. As shown there, the term structure
is best viewed as an abstract class providing, as functions of term to maturity, the prices of zero coupon
bonds (discount factors), yield on zero coupon bonds (spot rates) or forward rates. In the earlier case
we considered two particular implementations of the term structure: A �at term structure or a term
structure estimated by linear interpolations of spot rates. We now consider a number of alternative term
structure models. The focus of this chapter is empirical, we consider ways in which on one can specify a
term structure in a lower dimensional way. Essentially we are looking at ways of doing curve-�tting, of
estimating a nonlinear relationship between time and discount factors, or between time and spot rates.
Since the relationship is nonlinear, this is a nontrivial problem. One has to choose a functional form to
estimate, which allows enough �exibility to ��t� the term structure, but not so �exible that it violates
the economic restrictions on the term structure. Here are some considerations.

• Discount factors must be positive. (dt > 0). This is because they are prices, negative prices allow
for abritrage.

• Discount factors must be a nonincreasing function of time. (dt ≥ dt+k ∀ k > 0). Again, this is to
avoid arbitrage.

• Nominal interest rates can not be negative. (rt ≥ 0 ∀ t) This is another implication of the absence
of arbitrage opportunities.

• Both discount factors and interest rates must be smooth functions of time.

• The value of a payment today is the payment today. d0 = 1.

A number of alternative ways of estimating the term structure has been considered. Some are purely
used as interpolation functions, while others are fully speci�ed, dynamic term structure models. Of the
models that follow, the approximating function proposed in Nelson and Siegel (1987) and the cubic spline
used by e.g. McCulloch (1971) are examples of the �rst kind, and the term structure models of Cox,
Ingersoll, and Ross (1985) and Vasicek (1977) are examples of the second kind.

What is the typical use of the functions we consider here? One starts with a set of �xed income securities,
typically a set of treasury bonds. Observing the prices of these bonds, one asks: What set of discount
factors is most likely to have generated the observed prices. Or: What term structure approximations
provides the �best �t� to this set of observed bond prices.

20.1 The Nelson Siegel term structure approximation

Proposed by Nelson and Siegel (1987).

r(t) = β0 + (β1 + β2)

[
1− e−

t
λ

t
λ

]
+ β2

[
e−

t
λ

]
The implementation of this calculation is shown in 20.1

This is wrapped in a term structure class as shown in codes 20.2 and 20.3.

20.2 Bliss

In Bliss (1989) a further development of Nelson and Siegel (1987) was proposed.

r(t) = γ0 + γ1

[
1− e−

t
λ1

t
λ1

]
+ γ2

[
1− e−

t
λ2

t
λ2

− e−
t

λ2

]
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#include <cmath>
using namespace std;

double term structure yield nelson siegel(const double& t,
const double& beta0,
const double& beta1,
const double& beta2,
const double& lambda) {

if (t==0.0) return beta0;
double tl = t/lambda;
double r = beta0 + (beta1+beta2) * ((1−exp(−tl))/tl) + beta2 * exp(−tl);
return r;

};

C++ Code 20.1: Calculation of the Nelson and Siegel (1987) term structure model

class term structure class nelson siegel : public term structure class {
private:

double beta0 , beta1 , beta2 , lambda ;
public:

term structure class nelson siegel(const double& beta0,
const double& beta1,
const double& beta2,
const double& lambda);

virtual double yield(const double& T) const;
};

C++ Code 20.2: Header �le de�ning a term structure class wrapper for the Nelson Siegel approximation

This has 5 parameters to estimate: {γ0, γ1, γ2, λ1, λ2}.

#include "fin_recipes.h"

term structure class nelson siegel::term structure class nelson siegel( const double& b0,
const double& b1,
const double& b2,
const double& l) {

beta0 =b0; beta1 =b1; beta2 =b2; lambda =l;
};

term structure class nelson siegel::�term structure class nelson siegel(){};

double term structure class nelson siegel::yield(const double& t) const {
if (t<=0.0) return beta0 ;
return term structure yield nelson siegel(t,beta0 ,beta1 ,beta2 ,lambda );

};

C++ Code 20.3: De�ning a term structure class wrapper for the Nelson Siegel approximation

145



C++ program:

void test term structure nelson siegel(){
double beta0=0.01; double beta1=0.01; double beta2=0.01; double lambda=5.0;
double t=1.0;
cout << "Example calculations using the Nelson Siegel term structure approximation" << endl;
cout << " direct calculation, yield = "

<< term structure yield nelson siegel(t,beta0,beta1,beta2,lambda) << endl;

term structure class nelson siegel ns(beta0,beta1,beta2,lambda);
cout << " using a term structure class" << endl;
cout << " yield (t=1) = " << ns.yield(t) << endl;
cout << " discount factor (t=1) = " << ns.discount factor(t) << endl;
cout << " forward rate (t1=1, t2=2) = " << ns.forward rate(1,2) << endl;

};

Output from C++ program:

Example calculations using the Nelson Siegel term structure approximation

direct calculation, yield = 0.0363142

using a term structure class

yield (t=1) = 0.0363142

discount factor (t=1) = 0.964337

forward rate (t1=1, t2=2) = 0.0300602
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20.3 Cubic spline.

Cubic splines are well known for their good interpolation behaviour. The cubic spline parameterization
was �rst used by McCulloch (1971) to estimate the nominal term structure. He later added taxes in
McCulloch (1975). The cubic spline was also used by Litzenberger and Rolfo (1984). In this case the
qubic spline is used to approximate the discount factor, not the yields.

d(t) = 1 + b1t + c1t
2 + d1t

3 +
K∑

j=1

Fj(t− tj)31{t<tj}

Here 1{A} is the indicator function for an event A, and we have K knots.

To estimate this we need to �nd the 3 + K parameters:

{b1, c1, d1, F1, · · · , FK}

If the spline knots are known, this is a simple linear regression. Code ?? shows the calculation using this
approximation.

#include <cmath>
#include <vector>
using namespace std;

double term structure discount factor cubic spline(const double& t,
const double& b1,
const double& c1,
const double& d1,
const vector<double>& f,
const vector<double>& knots){

double d = 1.0 + b1*t + c1*(pow(t,2)) + d1*(pow(t,3));
for (int i=0;i<knots.size();i++) {

if (t >= knots[i]) { d += f[i] * (pow((t−knots[i]),3)); }
else { break; };

};
return d;

};

C++ Code 20.4: Approximating a discount function using a cubic spline

Codes 20.5 and 20.6 wraps this calculations into a term structure class.

#include "fin_recipes.h"

#include <vector>
using namespace std;

class term structure class cubic spline : public term structure class {
private:

double b ; double c ; double d ;
vector<double> f ; vector<double> knots ;

public:

term structure class cubic spline(const double& b, const double& c, const double& d,
const vector<double>& f, const vector<double> & knots);

virtual �term structure class cubic spline();
virtual double discount factor(const double& T) const;

};

C++ Code 20.5: Term structure class wrapping the cubic spline approximation

147



#include "fin_recipes.h"

term structure class cubic spline::
term structure class cubic spline ( const double& b, const double& c, const double& d,

const vector<double>& f, const vector<double>& knots) {
b = b; c = c; d = d; f .clear(); knots .clear();
if (f.size()!=knots.size()){ return; };
for (int i=0;i<f.size();++i) {

f .push back(f[i]);
knots .push back(knots[i]);

};
};

term structure class cubic spline::�term structure class cubic spline(){
f .clear();
knots .clear();

};

double term structure class cubic spline::discount factor(const double& T) const {
return term structure discount factor cubic spline(T,b ,c ,d ,f ,knots );

};

C++ Code 20.6: Term structure class wrapping the cubic spline approximation

C++ program:

void test term structure cubic spline(){
cout << "Example term structure calculations using a cubic spline " << endl;
double b=0.1; double c=0.1; double d=−0.1;
vector<double> f; f.push back(0.01); f.push back(0.01); f.push back(−0.01);
vector<double> knots; knots.push back(2); knots.push back(7); knots.push back(12);
cout << " direct calculation, discount factor (t=1) "

<< term structure discount factor cubic spline(1,b,c,d,f,knots) << endl;
cout << " Using a term structure class " << endl;
term structure class cubic spline cs(b,c,d,f,knots);
cout << " yield (t=1) = " << cs.yield(1) << endl;
cout << " discount factor (t=1) = " << cs.discount factor(1) << endl;
cout << " forward (t1=1, t2=2) = " << cs.forward rate(1,2) << endl;

};

Output from C++ program:

Example term structure calculations using a cubic spline

direct calculation, discount factor (t=1) 1.1

Using a term structure class

yield (t=1) = -0.0953102

discount factor (t=1) = 1.1

forward (t1=1, t2=2) = 0.318454
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20.4 Cox Ingersoll Ross.

The Cox et al. (1985) model is the most well�known example of a continous time, general equilibrium
model of the term structure.

The term structure model described in Cox et al. (1985) is one of the most commonly used in academic
work, because it is a general equilibrium model that still is �simple enough� to let us �nd closed form
expressions for derivative securities.

The short interest rate.

dr(t) = κ(θ − r(t))dt + σ
√

r(t)dW

The discount factor for a payment at time T.

d(t, T ) = A(t, T )e−B(t,T )r(t)

where

γ =
√

(κ + λ)2 + 2σ2

A(t, T ) =

[
2γe

1
2 (κ+λ+γ)(T−t)

(γ + κ + λ)(eλ(T−t) − 1) + 2γ

] 2κθ
σ2

and

B(t, T ) =
2eγ(T−t) − 1

(γ + κ + λ)(eλ(T−t) − 1) + 2γ

Five parameters: r, the short term interest rate, κ, the mean reversion parameter, λ, the �market� risk
parameter, θ the long�run mean of the process and σ, the variance rate of the process.

#include <cmath>
using namespace std;

double term structure discount factor cir(const double& t,
const double& r,
const double& kappa,
const double& lambda,
const double& theta,
const double& sigma){

double sigma sqr=pow(sigma,2);
double gamma = sqrt(pow((kappa+lambda),2)+2.0*sigma sqr);
double denum = (gamma+kappa+lambda)*(exp(gamma*t)−1)+2*gamma;
double p=2*kappa*theta/sigma sqr;
double enum1= 2*gamma*exp(0.5*(kappa+lambda+gamma)*t);
double A = pow((enum1/denum),p);
double B = (2*(exp(gamma*t)−1))/denum;
double dfact=A*exp(−B*r);
return dfact;

};

C++ Code 20.7: Calculation of the discount factor using the Cox et al. (1985) model
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#include "fin_recipes.h"

class term structure class cir : public term structure class {
private:

double r ; // interest rate
double kappa ; // mean reversion parameter
double lambda ; // risk aversion
double theta ; // long run mean
double sigma ; // volatility

public:

�term structure class cir();
term structure class cir(const double& r, const double& k, const double& l,

const double& th, const double& sigma);
virtual double discount factor(const double& T) const;

};

C++ Code 20.8: Class de�nition, Cox et al. (1985) model, header �le

#include "fin_recipes.h"

term structure class cir::�term structure class cir(){;};

term structure class cir::term structure class cir(const double& r, const double& k, const double& l,
const double& th, const double& sigma) {

r =r; kappa =k; lambda =l; theta =th; sigma =sigma;
};

double term structure class cir::discount factor(const double& T) const{
return term structure discount factor cir(T,r ,kappa ,lambda ,theta ,sigma );

};

C++ Code 20.9: Class de�nition, Cox et al. (1985) model

C++ program:

void test term structure cir(){
cout << "Example calculations using the Cox Ingersoll Ross term structure model " << endl;
double r = 0.05; double kappa=0.01; double sigma=0.1; double theta=0.08; double lambda=0.0;
cout << " direct calculation, discount factor (t=1): "

<< term structure discount factor cir(1, r, kappa, lambda, theta, sigma) << endl;
cout << " using a class " << endl;
term structure class cir cir(r,kappa,lambda,theta,sigma);
cout << " yield (t=1) = " << cir.yield(1) << endl;
cout << " discount factor (t=1) = " << cir.discount factor(1) << endl;
cout << " forward (t1=1, t2=2) = " << cir.forward rate(1,2) << endl;

};

Output from C++ program:

Example calculations using the Cox Ingersoll Ross term structure model

direct calculation, discount factor (t=1): 0.951166

using a class

yield (t=1) = 0.0500668

discount factor (t=1) = 0.951166

forward (t1=1, t2=2) = 0.0498756
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20.5 Vasicek

#include <cmath>
using namespace std;

double term structure discount factor vasicek(const double& time,
const double& r,
const double& a,
const double& b,
const double& sigma){

double A,B;
double sigma sqr = sigma*sigma;
double aa = a*a;
if (a==0.0){

B = time;
A = exp(sigma sqr*pow(time,3))/6.0;

}
else {

B = (1.0 − exp(−a*time))/a;
A = exp( ((B−time)*(aa*b−0.5*sigma sqr))/aa −((sigma sqr*B*B)/(4*a)));

};
double dfact = A*exp(−B*r);
return dfact;

}

C++ Code 20.10: Calculating a discount factor using the Vasicek functional form

#include "fin_recipes.h"

class term structure class vasicek : public term structure class {
private:

double r ; double a ; double b ; double sigma ;
public:

term structure class vasicek(const double& r, const double& a, const double& b, const double& sigma);
virtual double discount factor(const double& T) const;

};

C++ Code 20.11: Class de�nition, Vasicek (1977) model

#include "fin_recipes.h"

term structure class vasicek::�term structure class vasicek(){;};

term structure class vasicek::term structure class vasicek(const double& r, const double& a,
const double& b, const double& sigma) {

r =r; a =a; b =b; sigma =sigma;
};

double term structure class vasicek::discount factor(const double& T) const{
return term structure discount factor vasicek(T,r ,a ,b ,sigma );

};

C++ Code 20.12: Class de�nition, Vasicek (1977) model
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C++ program:

void test term structure vasicek() {
cout << "Example term structure calculation using the Vasicek term structure model" << endl;
double r=0.05; double a=−0.1; double b=0.1; double sigma=0.1;
cout << " direct calculation, discount factor (t=1): "

<< term structure discount factor vasicek(1, r, a, b, sigma) << endl;
term structure class vasicek vc(r,a,b,sigma);
cout << " using a term structure class " << endl;
cout << " yield (t=1) = " << vc.yield(1) << endl;
cout << " discount factor (t=1) = " << vc.discount factor(1) << endl;
cout << " forward rate (t1=1, t2=2) = " << vc.forward rate(1,2) << endl;

}

Output from C++ program:

Example term structure calculation using the Vasicek term structure model

direct calculation, discount factor (t=1): 0.955408

using a term structure class

yield (t=1) = 0.0456168

discount factor (t=1) = 0.955408

forward rate (t1=1, t2=2) = 0.0281476
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The methods in this chapter I �rst studied in my dissertation at Carnegie Mellon University in 1992,
which was published in Green and Ødegaard (1997).
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Chapter 21

Binomial Term Structure models

Pricing bond options with the Black Scholes model, or its binomial approximation, as done in chapter 18,
does not always get it right. For example, it ignores the fact that at the maturity of the bond, the bond
volatility is zero. The bond volatility decreases as one gets closer to the bond maturity. This behaviour
is not captured by the assumptions underlying the Black Scholes assumption. We therefore look at more
complicated term structure models, the unifying theme of which is that they are built by building trees

of the interest rate.

21.1 The Rendleman and Bartter model

The Rendleman and Bartter approach to valuation of interest rate contingent claims (see Rendleman
and Bartter (1979) and Rendleman and Bartter (1980)) is a particular simple one. Essentially, it is to
apply the same binomial approach that is used to approximate options in the Black Scholes world, but
the random variable is now the interest rate. This has implications for multiperiod discounting: Taking
the present value is now a matter of choosing the correct sequence of spot rates, and it may be necessary
to keep track of the whole �tree� of interest rates.

The general idea is to construct a tree as shown in �gure 21.1.

Figure 21.1: Interest rate tree
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The �gure illustrates the building of an interest rate tree of one period spot rates by assuming that for any given period t the next
period interest rate can only take on two values, rt+1 = urt or rt+1 = drt, where u and d are constants. r0 is the initial spot rate.

Code 21.1 shows how one can construct such an interest rate tree.

Such a tree can then be used to price various �xed income securities. We will do this in a later version
of this manuscript, but for now we just show a direct implementation of the original model. Code 21.2
implements the original algorithm for a call option on a (long maturity) zero coupon bond.

21.2 Readings

General references include Sundaresan (2001).

Rendleman and Bartter (1979) and Rendleman and Bartter (1980) are the original references for building
standard binomial interest rate trees.
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#include <vector>
#include <cmath>
using namespace std;

vector< vector<double> >
build interest rate tree rendleman bartter(const double& r0,

const double& u,
const double& d,
const int& n){

vector< vector<double> > tree;
for (int i=1;i<=n;++i){

vector<double> r(i);
for (int j=0;j<i;++j){

r[j] = r0*pow(u,j)*pow(d,i−j−1);
};
tree.push back(r);

};
return tree;

};

C++ Code 21.1: Building an interest rate tree

155



#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

double bond option price call zero american rendleman bartter(const double& X,
const double& option maturity,
const double& S,
const double& M, // term structure paramters
const double& interest, // current short interest rate
const double& bond maturity, // time to maturity for underlying bond
const double& maturity payment,
const int& no steps) {

double delta t = bond maturity/no steps;

double u=exp(S*sqrt(delta t));
double d=1/u;
double p up = (exp(M*delta t)−d)/(u−d);
double p down = 1.0−p up;

vector<double> r(no steps+1);
r[0]=interest*pow(d,no steps);
double uu=u*u;
for (int i=1;i<=no steps;++i){ r[i]=r[i−1]*uu;};
vector<double> P(no steps+1);
for (int i=0;i<=no steps;++i){ P[i] = maturity payment; };
int no call steps=int(no steps*option maturity/bond maturity);
for (int curr step=no steps;curr step>no call steps;−−curr step) {

for (int i=0;i<curr step;i++) {
r[i] = r[i]*u;
P[i] = exp(−r[i]*delta t)*(p down*P[i]+p up*P[i+1]);

};
};
vector<double> C(no call steps+1);
for (int i=0;i<=no call steps;++i){ C[i]=max(0.0,P[i]−X); };
for (int curr step=no call steps;curr step>=0;−−curr step) {

for (int i=0;i<curr step;i++) {
r[i] = r[i]*u;
P[i] = exp(−r[i]*delta t)*(p down*P[i]+p up*P[i+1]);
C[i]=max(P[i]−X, exp(−r[i]*delta t)*(p up*C[i+1]+p down*C[i]));

};
};
return C[0];

};

C++ Code 21.2: RB binomial model for European call on zero coupon bond

C++ program:

void test rendleman bartter zero coupon call() {
double K=950; double S=0.15; double M=0.05; double interest=0.10;
double option maturity=4; double bond maturity=5; double bond maturity payment=1000;
int no steps=100;
cout << " Rendleman Bartter price of option on zero coupon bond: ";
double c = bond option price call zero american rendleman bartter( K, option maturity, S, M,

interest, bond maturity,
bond maturity payment, no steps);

cout << " c = " << c << endl;
};

Output from C++ program:

Rendleman Bartter price of option on zero coupon bond: c = 0.00713661
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Chapter 22

Term Structure Derivatives

22.1 Vasicek bond option pricing

If the term structure model is Vasicek's model there is a solution for the price of an option on a zero
coupon bond, due to Jamshidan (1989).

Under Vacisek's model the process for the short rate is assumed to follow.

dr = a(b− r)dt + σdZ

where a, b and σ are constants. We have seen earlier how to calculate the discount factor in this case.
We now want to consider an European Call option in this setting.

Let P (t, s) be the time t price of a zero coupon bond with a payment of $1 at time s (the discount factor).
The price at time t of a European call option maturing at time T on on a discount bond maturing at
time s is (See Jamshidan (1989) and Hull (1993))

P (t, s)N(h)−XP (t, T )N(h− σP )

where

h =
1

σP
ln

P (t, s)
P (t, T )X

+
1
2
σP

σP = v(t, T )B(T, s)

B(t, T ) =
1− e−a(T−t)

a

v(t, T )2 =
σ2(1− e−a(T−t))

2a

In the case of a = 0,

v(t, T ) = σ
√

T − t

σP = σ(s− T )
√

T − t
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#include "normdist.h"

#include "fin_recipes.h"

#include <cmath>
using namespace std;

double bond option price call zero vasicek(const double& X, // exercise price
const double& r, // current interest rate
const double& option time to maturity,
const double& bond time to maturity,
const double& a, // parameters
const double& b,
const double& sigma){

double T t = option time to maturity;
double s t = bond time to maturity;
double T s = s t−T t;
double v t T;
double sigma P;
if (a==0.0) {

v t T = sigma * sqrt ( T t ) ;
sigma P = sigma*T s*sqrt(T t);

}
else {

v t T = sqrt (sigma*sigma*(1−exp(−2*a*T t))/(2*a));
double B T s = (1−exp(−a*T s))/a;
sigma P = v t T*B T s;

};
double h = (1.0/sigma P) * log (term structure discount factor vasicek(s t,r,a,b,sigma)/

(term structure discount factor vasicek(T t,r,a,b,sigma)*X) )
+ sigma P/2.0;

double c = term structure discount factor vasicek(s t,r,a,b,sigma)*N(h)
−X*term structure discount factor vasicek(T t,r,a,b,sigma)*N(h−sigma P);

return c;
};

C++ Code 22.1: Bond option pricing using the Vasicek model

C++ program:

void test vasicek option pricing(){
double a = 0.1; double b = 0.1; double sigma = 0.02; double r = 0.05; double X=0.9;
cout << " Vasicek call option price "

<< bond option price call zero vasicek(X,r,1,5,a,b,sigma) << endl;
};

Output from C++ program:

Vasicek call option price 0.000226833
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Appendix A

Normal Distribution approximations.

We will in general not go into detail about more standard numerical problems not connected to �nance,
there are a number of well known sources for such, but we show the example of calculations involving
the normal distribution.

A.1 The normal distribution function

The nurmal distribution function

n(x) = e−
x2
2

is calculated as

#include <cmath> // c library of math functions
using namespace std; // which is part of the standard namespace

// most C compilers de�ne PI, but just in case it doesn't
#ifndef PI
#de�ne PI 3.141592653589793238462643
#endif

double n(const double& z) { // normal distribution function
return (1.0/sqrt(2.0*PI))*exp(−0.5*z*z);

};

C++ Code A.1: The normal distribution function

A.2 The cumulative normal distribution

The solution of a large number of option pricing formulas are written in terms of the cumulative normal
distribution. For a random variable x the cumulative probability is the probability that the outcome
is lower than a given value z. To calculate the probability that a normally distubuted random variable
with mean 0 and unit variance is less than z, N(z), one have to evaluate the integral

Prob(x ≤ z) = N(z) =
∫ z

−∞
n(x)dx =

∫ z

−∞
e−

x2
2 dx

There is no explicit closed form solution for calculation of this integral, but a large number of well known
approximations exists. Abramowiz and Stegun (1964) is a good source for these approximations. The
following is probably the most used such approximation, it being pretty accurate and relatively fast. The
arguments to the function are assumed normalized to a (0,1 ) distribution.

A.3 Multivariate normal

The normal distribution is also de�ned for several random variables. We then characterise the vector of
random variables

X =


x1

x2

...
xn


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#include <cmath> // math functions.
using namespace std;

double N(const double& z) {
if (z > 6.0) { return 1.0; }; // this guards against over�ow
if (z < −6.0) { return 0.0; };

double b1 = 0.31938153;
double b2 = −0.356563782;
double b3 = 1.781477937;
double b4 = −1.821255978;
double b5 = 1.330274429;
double p = 0.2316419;
double c2 = 0.3989423;

double a=fabs(z);
double t = 1.0/(1.0+a*p);
double b = c2*exp((−z)*(z/2.0));
double n = ((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t;
n = 1.0−b*n;
if ( z < 0.0 ) n = 1.0 − n;
return n;

};

C++ Code A.2: The cumulative normal

A probability statement about this vector is a joint statement about all elements of the vector.

A.4 Calculating cumulative bivariate normal probabilities

The most used multivariate normal calculation is the bivariate case, where we let x and y be bivariate
normally distributed, each with mean 0 and variance 1, and assume the two variables have correlation
of ρ. By the de�nition of correlation ρ ∈ [−1, 1]. The cumulative probability distribution

P (x < a, y < b) = N(a, b, ρ)

=
∫ a

−∞

∫ b

−∞

1

2π
√

1− ρ2
exp

(
−1

2
x2 − 2ρxy + y2

1− ρ2

)
dxdy

There are several approximations to this integral. We pick one such, discussed in (Hull, 1993, Ch 10),
shown in code A.3

If one has more than two correlated variables, the calculation of cumulative probabilites is a nontrivial
problem. One common method involves Monte Carlo estimation of the de�nite integral. We will consider
this, but then it is necessary to �rst consider simulation of random normal variables.
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#include <cmath> // include the standard library mathematics functions
using namespace std; // which are in the standard namespace

double N(const double&); // de�ne the univariate cumulative normal distribution as a separate function

#ifndef PI
const double PI=3.141592653589793238462643;
#endif

inline double f(const double& x, const double& y,
const double& aprime, const double& bprime,
const double& rho) {

double r = aprime*(2*x−aprime) + bprime*(2*y−bprime) + 2*rho*(x−aprime)*(y−bprime);
return exp(r);

};

inline double sgn(const double& x) { // sign function
if (x>=0.0) return 1.0;
return −1.0;

};

double N(const double& a, const double& b, const double& rho) {
if ( (a<=0.0) && (b<=0.0) && (rho<=0.0) ) {

double aprime = a/sqrt(2.0*(1.0−rho*rho));
double bprime = b/sqrt(2.0*(1.0−rho*rho));
double A[4]={0.3253030, 0.4211071, 0.1334425, 0.006374323};
double B[4]={0.1337764, 0.6243247, 1.3425378, 2.2626645 };
double sum = 0;
for (int i=0;i<4;i++) {

for (int j=0; j<4; j++) {
sum += A[i]*A[j]* f(B[i],B[j],aprime,bprime,rho);

};
};
sum = sum * ( sqrt(1.0−rho*rho)/PI);
return sum;

}
else if ( a * b * rho <= 0.0 ) {

if ( ( a<=0.0 ) && ( b>=0.0 ) && (rho>=0.0) ) {
return N(a) − N(a, −b, −rho);

}
else if ( (a>=0.0) && (b<=0.0) && (rho>=0.0) ) {

return N(b) − N(−a, b, −rho);
}
else if ( (a>=0.0) && (b>=0.0) && (rho<=0.0) ) {

return N(a) + N(b) − 1.0 + N(−a, −b, rho);
};

}
else if ( a * b * rho >= 0.0 ) {

double denum = sqrt(a*a − 2*rho*a*b + b*b);
double rho1 = ((rho * a − b) * sgn(a))/denum;
double rho2 = ((rho * b − a) * sgn(b))/denum;
double delta=(1.0−sgn(a)*sgn(b))/4.0;
return N(a,0.0,rho1) + N(b,0.0,rho2) − delta;

};
return −99.9; // should never get here, alternatively throw exception

};

C++ Code A.3: Approximation to the cumulative bivariate normal
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C++ program:

#include "normdist.h"

void test cumulative normal() {
cout << " N(0) = " << N(0) << endl;
cout << " N(0,0,0) = " << N(0,0,0) << endl;

};

Output from C++ program:

N(0) = 0.5

N(0,0,0) = 0.25
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A.5 Simulating random normal numbers

Generation of random numbers is a large topic and is treated at length in such sources as Knuth (1997).
The generated numbers can never be truly random, only �pseudo�-random, they will be generated ac-
cording to some reproducible algorithm and after a (large) number of random number generations the
sequence will start repeating itself. The number of iterations before replication starts is a measure of the
quality of a random number generator. For anybody requiring high-quality random number generators
the rand() function provided by the standard C++ library should be avoided, but for not getting into
involved discussion of random number generations we use this function as a basis for the generation of
uniformly distributed numbers in the interval [0, 1), as shown in code A.4.

#include <cstdlib>

double random uniform 0 1(void){
return double(rand())/double(RAND MAX); // this uses the C library random number generator.

};

C++ Code A.4: Pseudorandom numbers from an uniform [0, 1) distribution

Exercise 23.

Replace the random_uniform function here by an alternative of higher quality, by looking into what numerical
libraries is available on your computing platform, or by downloading a high quality random number generator
from such places as mathlib or statlib.

These uniformly distributed distributed random variates are used as a basis for the polar method for
normal densities discussed in Knuth (1997) and inplemented as shown in code A.5

#include <cmath>
#include <cstdlib>
//using namespace std;

double random uniform 0 1(void);

double random normal(void){
double U1, U2, V1, V2;
double S=2;
while (S>=1) {

U1 = random uniform 0 1();
U2 = random uniform 0 1();
V1 = 2.0*U1−1.0;
V2 = 2.0*U2−1.0;
S = pow(V1,2)+pow(V2,2);

};
double X1=V1*sqrt((−2.0*log(S))/S);
return X1;

};

C++ Code A.5: Pseudorandom numbers from a normal (0, 1) distribution

A.6 Cumulative probabilities for general multivariate distributions

When moving beyond the bivariate case calculation of probability integrals become more of an exercise
in general numerical integration. A typical tool is Monte Carlo integration, but that is not the only
possibility.

A.7 References

Tong (1990) discusses the multivariate normal distribution, and is a good reference.
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C++ program:

#include "normdist.h"

void test random normal(){
cout << " 5 random uniform numbers between 0 and 1: ";
for (int i=0;i<5;++i){ cout << " " << random uniform 0 1(); }; cout << endl;
cout << " 5 random normal(0,1) numbers: ";
for (int i=0;i<5;++i){ cout << " " << random normal(); }; cout << endl;

};

Output from C++ program:

5 random uniform numbers between 0 and 1: 0.840188 0.394383 0.783099 0.79844 0.911647

5 random normal(0,1) numbers: -1.07224 0.925946 2.70202 1.36918 0.0187313
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Appendix B

C++ concepts

This chapter contains a listing of various C/C++ concepts and some notes on each of them.

bool Boolean variable, taking on the two values true and false. For historical reasons one can also
use the values zero and one for false and true.

class (C++ keyword).

const (qualifyer to variable in C++ function call).

double (basic type). A �oating point number with high accuracy.

exp(x) (C function). De�ned in <cmath>. Returns the natural exponent e to the given power x, ex.

fabs

float (basic type). A �oating point number with limited accuracy.

for Loop

header file

if

Indexation (in vectors and matrices). To access element number i in an array A, use A[i-1]. Well
known trap for people coming to C from other languages. Present in C for historical e�ciency
reasons. Arrays in C were implemented using pointers. Indexing was done by �nding the �rst
element of the array, and then adding pointers to �nd the indexed element. The �rst element is of
course found by adding nothing to the �rst elment, hence the �rst element was indexed by zero.

include

inline (qualifyer to C++ function name). Hint to the optimizer that this function is most e�ciently
implemented by inlining it, or putting the full code of the function into each instance of its calling.
Has the side e�ect of making the function local to the �le in which it is de�ned.

int (basic type). An integer with a limited number of signi�cant digits.

log(x) (C function). De�ned in <cmath>. Calculates the natural logarithm ln(x) of its argument.

long (basic type). An integer that can contain a large number.

namespace

return

standard namespace

string

using

vector (C++ container class). De�ned in <vector>

while
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Appendix C

Summarizing routine names

In many of the algorithms use is made of other routines. To simplify the matter all routines are sum-
marised in one header �le, fin_recipes.h. This appendix shows this �le.

// �le: �n recipes.h
// author: Bernt Arne Oedegaard
// de�nes all routines in the �nancial numerical recipes �book�

#ifndef FIN RECIPES H
#de�ne FIN RECIPES H

#include <vector>
using namespace std;

///////// present value ////////////////////////////////////
// discrete coumpounding
/////////////////////////////////
// discrete, annual compounding

double cash �ow pv discrete ( const vector<double>& c�ow times, const vector<double>& c�ow amounts,
const double& r);

double cash �ow irr discrete(const vector<double>& c�ow times, const vector<double>& c�ow amounts);
bool cash �ow unique irr(const vector<double>& c�ow times, const vector<double>& c�ow amounts);
double bonds price discrete(const vector<double>& cash�ow times, const vector<double>& cash�ows,

const double& r);
double bonds yield to maturity discrete(const vector<double>& times,

const vector<double>& amounts,
const double& bondprice);

double bonds duration discrete(const vector<double>& times,
const vector<double>& cash�ows,
const double& r);

double bonds duration macaulay discrete(const vector<double>& cash�ow times,
const vector<double>& cash�ows,
const double& bond price);

double bonds duration modi�ed discrete (const vector<double>& times,
const vector<double>& amounts,
const double& bond price);

double bonds convexity discrete(const vector<double>& c�ow times,
const vector<double>& c�ow amounts,
const double& r);

/////////////////////////////////
// continous compounding.
double cash �ow pv(const vector<double>& c�ow times,const vector<double>& c�ow amounts,const double& r);
double cash �ow irr(const vector<double>& c�ow times, const vector<double>& c�ow amounts);
double bonds price(const vector<double>& cash�ow times, const vector<double>& cash�ows, const double& r);
double bonds price(const vector<double>& coupon times, const vector<double>& coupon amounts,

const vector<double>& principal times, const vector<double>& principal amounts,
const double& r);

double bonds duration(const vector<double>& cash�ow times, const vector<double>& cash�ows,
const double& r);

double bonds yield to maturity(const vector<double>& cash�ow times,const vector<double>& cash�ow amounts,
const double& bondprice);

double bonds duration macaulay(const vector<double>& cash�ow times, const vector<double>& cash�ows,
const double& bond price);

double bonds convexity(const vector<double>& cash�ow times, const vector<double>& cash�ow amounts,
const double& y );

/// term structure basics

double term structure yield from discount factor(const double& dfact, const double& t);
double term structure discount factor from yield(const double& r, const double& t);
double term structure forward rate from discount factors(const double& d t1, const double& d t2,
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const double& time);
double term structure forward rate from yields(const double& r t1, const double& r t2,

const double& t1, const double& t2);
double term structure yield linearly interpolated(const double& time,

const vector<double>& obs times,
const vector<double>& obs yields);

// a term structure class

class term structure class {
public:

virtual �term structure class();
virtual double yield(const double& t) const;
virtual double discount factor(const double& t) const;
virtual double forward rate(const double& t1, const double& t2) const;

};

class term structure class �at : public term structure class {
private:

double R ; // interest rate
public:

term structure class �at(const double& r);
virtual �term structure class �at();
virtual double yield(const double& t) const;
// virtual double discount factor(const double& t) const;
// virtual double term structure class �at::forward rate(const double& t1, const double& t2) const;
void set int rate(const double& r);

};

class term structure class interpolated : public term structure class {
private:

vector<double> times ; // use to keep a list of yields
vector<double> yields ;
void clear();

public:

term structure class interpolated();
term structure class interpolated(const vector<double>& times, const vector<double>& yields);
virtual �term structure class interpolated();
term structure class interpolated(const term structure class interpolated&);
term structure class interpolated operator= (const term structure class interpolated&);

int no observations() const { return times .size(); };
virtual double yield(const double& T) const;
void set interpolated observations(vector<double>& times, vector<double>& yields);

};

// using the term structure classes

double bonds price(const vector<double>& cash�ow times,
const vector<double>& cash�ows,
const term structure class& d);

double bonds duration(const vector<double>& cash�ow times,
const vector<double>& cash�ow amounts,
const term structure class& d);

double bonds convexity(const vector<double>& cash�ow times,
const vector<double>& cash�ow amounts,
const term structure class& d);

//// Futures pricing
double futures price(const double& S, const double& r, const double& time to maturity);

/// Binomial option pricing

// one periode binomial
double option price call european binomial single period( const double& S, const double& K, const double& r,

const double& u, const double& d);
// multiple periode binomial

double option price call european binomial multi period given ud( const double& S, const double& X, const double& r,
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const double& u, const double& d, const int& no periods);

// multiple periode binomial
vector< vector<double> > binomial tree(const double& S0, const double& u,const double& d,

const int& no steps);

/// Black Scholes formula //////////////////////////////////////////

double option price call black scholes(const double& S, const double& K, const double& r,
const double& sigma, const double& time) ;

double option price put black scholes (const double& S, const double& K, const double& r,
const double& sigma, const double& time) ;

double

option price implied volatility call black scholes newton( const double& S, const double& K,
const double& r, const double& time,
const double& option price);

double option price implied volatility call black scholes bisections( const double& S, const double& K,
const double& r, const double& time,
const double& option price);

double option price delta call black scholes(const double& S, const double& K, const double& r,
const double& sigma, const double& time);

double option price delta put black scholes (const double& S, const double& K, const double& r,
const double& sigma, const double& time);

void option price partials call black scholes(const double& S, const double& K, const double& r,
const double& sigma, const double& time,
double& Delta, double& Gamma, double& Theta,
double& Vega, double& Rho);

void option price partials put black scholes(const double& S, const double& K, const double& r,
const double& sigma, const double& time,
double& Delta, double& Gamma, double& Theta,
double& Vega, double& Rho);

/// warrant price
double warrant price adjusted black scholes(const double& S, const double& K,

const double& r, const double& sigma,
const double& time,
const double& no warrants outstanding,
const double& no shares outstanding);

double warrant price adjusted black scholes(const double& S, const double& K,
const double& r, const double& q,
const double& sigma, const double& time,
const double& no warrants outstanding,
const double& no shares outstanding);

/// Extensions of the Black Scholes model //////////////

double option price european call payout(const double& S, const double& K, const double& r,
const double& b, const double& sigma, const double& time);

double option price european put payout (const double& S, const double& K, const double& r,
const double& b, const double& sigma, const double& time);

double option price european call dividends(const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const vector<double>& dividend times,
const vector<double>& dividend amounts );

double option price european put dividends( const double& S, const double& K, const double& r,
const double& sigma,const double& time,
const vector<double>& dividend times,
const vector<double>& dividend amounts);

double option price american call one dividend(const double& S, const double& K, const double& r,
const double& sigma,
const double& tau, const double& D1, const double& tau1);

double futures option price call european black(const double& F, const double& K, const double& r,
const double& sigma, const double& time);

double futures option price put european black(const double& F, const double& K, const double& r,
const double& sigma, const double& time);

double currency option price call european(const double& S, const double& K, const double& r,
const double& r f, const double& sigma, const double& time);
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double currency option price put european(const double& S, const double& K, const double& r,
const double& r f, const double& sigma, const double& time);

double option price american perpetual call(const double& S, const double& K, const double& r,
const double& q, const double& sigma);

double option price american perpetual put(const double& S, const double& K, const double& r,
const double& q, const double& sigma);

// binomial option approximation ////////////////

double option price call european binomial(const double& S, const double& K, const double& r,
const double& sigma, const double& t, const int& steps);

double option price put european binomial (const double& S, const double& K, const double& r,
const double& sigma, const double& t, const int& steps);

double option price call american binomial(const double& S, const double& K, const double& r,
const double& sigma, const double& t, const int& steps);

double option price put american binomial (const double& S, const double& K, const double& r,
const double& sigma, const double& t, const int& steps);

double option price call american binomial(const double& S, const double& K,
const double& r, const double& y,
const double& sigma, const double& t, const int& steps);

double option price put american binomial (const double& S, const double& K, const double& r,
const double& y, const double& sigma,
const double& t, const int& steps);

double option price call american discrete dividends binomial( const double& S, const double& K,
const double& r,
const double& sigma, const double& t,
const int& steps,
const vector<double>& dividend times,
const vector<double>& dividend amounts);

double option price put american discrete dividends binomial(const double& S, const double& K,
const double& r,
const double& sigma, const double& t,
const int& steps,
const vector<double>& dividend times,
const vector<double>& dividend amounts);

double option price call american proportional dividends binomial(const double& S, const double& K,
const double& r, const double& sigma,
const double& time, const int& no steps,
const vector<double>& dividend times,
const vector<double>& dividend yields);

double option price put american proportional dividends binomial( const double& S, const double& K, const double& r,
const double& sigma, const double& time, const int& no steps,
const vector<double>& dividend times,
const vector<double>& dividend yields);

double option price delta american call binomial(const double& S, const double& K, const double& r,
const double& sigma, const double& t, const int& no steps);

double option price delta american put binomial(const double& S, const double& K, const double& r,
const double& sigma, const double& t, const int& no steps);

void option price partials american call binomial(const double& S, const double& K, const double& r,
const double& sigma, const double& time, const int& no steps,
double& delta, double& gamma, double& theta,
double& vega, double& rho);

void option price partials american put binomial(const double& S, const double& K, const double& r,
const double& sigma, const double& time, const int& no steps,
double& delta, double& gamma, double& theta,
double& vega, double& rho);

double futures option price call american binomial(const double& F, const double& K, const double& r, const double& sigma,
const double& time, const int& no steps);

double futures option price put american binomial( const double& F, const double& K, const double& r, const double& sigma,
const double& time, const int& no steps);

double currency option price call american binomial( const double& S, const double& K, const double& r, const double& r f,
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const double& sigma, const double& t, const int& n);

double currency option price put american binomial( const double& S, const double& K, const double& r, const double& r f,
const double& sigma, const double& t, const int& n);

//////////////////// �nite di�erences //////////////////

double option price call american �nite di� explicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price put american �nite di� explicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price call european �nite di� explicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price put european �nite di� explicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price call american �nite di� implicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price put american �nite di� implicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price call european �nite di� implicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

double option price put european �nite di� implicit( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
const int& no S steps, const int& no t steps);

///////////////////////// simulated option prices //////////////////////////////////////
// Payo� only function of terminal price
double option price call european simulated(const double& S, const double& K,

const double& r, const double& sigma,
const double& time to maturity, const int& no sims);

double option price put european simulated(const double& S, const double& K,
const double& r, const double& sigma,
const double& time to maturity, const int& no sims);

double option price delta call european simulated(const double& S, const double& K,
const double& r, const double& sigma,
const double& time to maturity, const int& no sims);

double option price delta put european simulated(const double& S, const double& K,
const double& r, const double& sigma,
const double& time to maturity, const int& no sims);

double simulate lognormal random variable(const double& S, const double& r, const double& sigma,
const double& time);

double

derivative price simulate european option generic( const double& S, const double& K,
const double& r, const double& sigma,
const double& time,
double payo�(const double& price, const double& K),
const int& no sims);

double

derivative price simulate european option generic with control variate(const double& S, const double& K,
const double& r,const double& sigma,
const double& time,
double payo�(const double& price,

const double& K),
const int& no sims);
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double

derivative price simulate european option generic with antithetic variate(const double& S, const double& K,
const double& r,
const double& sigma,
const double& time,
double payo�(const double&price,

const double& K),
const int& no sims);

/////////////////////////////
// payo�s of various options, to be used as function arguments in above simulations
double payo� call(const double& price, const double& K);
double payo� put (const double& price, const double& K);
double payo� cash or nothing call(const double& price, const double& K);
double payo� asset or nothing call(const double& price, const double& K);

/////////// approximated option prices ////////////////////////

double option price american call approximated baw(const double& S, const double& K,
const double& r, const double& b,
const double& sigma, const double& time);

double option price american put approximated baw(const double& S, const double& K,
const double& r, const double& b,
const double& sigma, const double& time);

////////////// path dependent and other exotic options ////////////////////////////////

double option price call bermudan binomial(const double& S, const double& X, const double& r,
const double& q, const double& sigma, const double& time,
const vector<double>& potential exercise times,
const int& steps);

double option price put bermudan binomial( const double& S, const double& X, const double& r,
const double& q, const double& sigma, const double& time,
const vector<double>& potential exercise times,
const int& steps);

double option price european lookback call(const double& S, const double& Smin, const double& r,
const double& q, const double& sigma, const double& time);

double option price european lookback put(const double& S, const double& Smin, const double& r,
const double& q, const double& sigma, const double& time);

double

option price asian geometric average price call(const double& S, const double& K, const double& r,
const double& q, const double& sigma, const double& time);

vector<double> simulate lognormally distributed sequence(const double& S, const double& r,
const double& sigma, const double& time, const int& no steps);

double

derivative price simulate european option generic( const double& S, const double& K, const double& r,
const double& sigma, const double& time,
double payo�(const vector<double>& price,

const double& K),
const int& no steps, const int& no sims);

double

derivative price simulate european option generic with control variate(const double& S, const double& K,
const double& r, const double& sigma,
const double& time,
double payo�(const vector<double>& price,

const double& K),
const int& nosteps, const int& nosims);

/////////////////////////////
// payo�s of various options, to be used as function arguments in above simulations
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double payo� arithmetric average call(const vector<double>& prices, const double& K);
double payo� geometric average call(const vector<double>& prices, const double& K);
double payo� lookback call(const vector<double>& prices, const double& unused variable);
double payo� lookback put(const vector<double>& prices, const double& unused variable);

/////////////////// alternative stochastic processes ////////////////

double option price call merton jump di�usion( const double& S, const double& K, const double& r,
const double& sigma, const double& time to maturity,
const double& lambda, const double& kappa, const double& delta);

// �xed income derivatives, GBM assumption on bond price

double bond option price call zero black scholes(const double& B, const double& K, const double& r,
const double& sigma, const double& time);

double bond option price put zero black scholes(const double& B, const double& K, const double& r,
const double& sigma, const double& time);

double bond option price call coupon bond black scholes(const double& B, const double& K, const double& r,
const double& sigma, const double& time,
const vector<double> coupon times,
const vector<double> coupon amounts);

double bond option price put coupon bond black scholes(const double& B, const double& K, const double& r,
const double& sigma, const double& time,
const vector<double> coupon times,
const vector<double> coupon amounts);

double bond option price call american binomial( const double& B, const double& K, const double& r,
const double& sigma, const double& t, const int& steps);

double bond option price put american binomial( const double& B, const double& K, const double& r,
const double& sigma, const double& t, const int& steps);

////////////////////////////////////////////////////////////////////////////////
// term structure models
/// formulas for calculation

double term structure yield nelson siegel(const double& t,
const double& beta0, const double& beta1, const double& beta2,
const double& lambda );

double term structure discount factor cubic spline(const double& t,
const double& b1,
const double& c1,
const double& d1,
const vector<double>& f,
const vector<double>& knots);

double term structure discount factor cir(const double& t, const double& r,
const double& kappa,
const double& lambda,
const double& theta,
const double& sigma);

double term structure discount factor vasicek(const double& time,
const double& r,
const double& a,const double& b, const double& sigma);

/// de�ning classes wrapping the above term structure approximations

class term structure class nelson siegel : public term structure class {
private:

double beta0 , beta1 , beta2 , lambda ;
public:

virtual �term structure class nelson siegel();
term structure class nelson siegel(const double& beta0, const double& beta1,

const double& beta2, const double& lambda);
virtual double yield(const double& t) const;

};

class term structure class cubic spline : public term structure class {
private:
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double b ; double c ; double d ; vector<double> f ; vector<double> knots ;
public:

term structure class cubic spline(const double& b, const double& c, const double& d,
const vector<double>& f, const vector<double> & knots);

virtual �term structure class cubic spline();
virtual double discount factor(const double& t) const;

};

class term structure class cir : public term structure class {
private:

double r ; double kappa ; double lambda ; double theta ; double sigma ;
public:

term structure class cir(const double& r, const double& k, const double& l,
const double& th,const double& sigma);

virtual �term structure class cir();
virtual double discount factor(const double& t) const;

};

class term structure class vasicek : public term structure class {
private:

double r ; double a ; double b ; double sigma ;
public:

term structure class vasicek(const double& r, const double& a, const double& b, const double& sigma);
virtual �term structure class vasicek();
virtual double discount factor(const double& T) const;

};

/////////////////
/// binomial term structure models
/// bond option, rendlemann bartter (binomial)

double

bond option price call zero american rendleman bartter(const double& K, const double& option maturity,
const double& S, const double& M,
const double& interest,
const double& bond maturity,
const double& maturity payment,
const int& no steps);

/////////////////////////////////
// term structure derivatives, analytical solutions

double bond option price call zero vasicek(const double& X, const double& r,
const double& option time to maturity,
const double& bond time to maturity,
const double& a, const double& b, const double& sigma);

double bond option price put zero vasicek(const double& X, const double& r,
const double& option time to maturity,
const double& bond time to maturity,
const double& a, const double& b, const double& sigma);

#endif
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Appendix D

Installation

The routines discussed in the book are available for download.

D.1 Source availability

The algorithms are available from my home page as a ZIP �le containing the source code. These have
been tested with the latest version of the GNU C++ compiler. As the algorithms in places uses code
from the Standard Template Library, other compilers may not be able to compile all the �les directly.
If your compiler complains about missing header �les you may want to check if the STL header �les
have di�erent names on your system. The algorithm �les will track the new ANSI standard for C++
libraries as it is being settled on. If the compiler is more than a couple of years old, it will not have STL.
Alternatively, the GNU compiler gcc is available for free on the internet, for most current operating
systems.
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